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Abstract 
The ultra-low latency requirements of mission-critical applications necessitate high 
computation power. To accomplish this objective, multi-access edge computing (MEC) 
is a crucial technology that brings computation resources closer to user equipments 
(UE) and provides an offloading option. In situations where terrestrial MEC cannot meet 
the requirements, aerial-assisted MEC with unmanned aerial vehicles (UAVs) can be 
utilized due to their flexible deployment and enhanced coverage. However, for a 
latency-optimized optimal offloading strategy, it is essential to consider the challenges 
posed by the environment's dynamics, the availability of resources at UAVs, and the 
computation requirements of UEs. To address these challenges, we present four 
distributed deep reinforcement learning (DRL) frameworks for efficient computation 
offloading in aerial-assisted MEC networks.   

1. Introduction
A multitude of mission-critical applications are emerging and gaining popularity,
leading to a surge in computation demand and support for ultra-low latency
requirements. However, the user equipments (UE) have substantially limited
processing capacity. It is challenging for the UEs to process both latency-sensitive
applications, such as intelligent transportation and telemedicine, which are highly
interactive and real-time, and susceptible to even the smallest time delays, and
computationally expensive applications, such as image and video processing for
surveillance, which require a significant amount of computation capability. In such
scenarios, we consider multi-access edge computing (MEC) as a potential solution by
taking into account the specifications, reports, and white papers published by the
European telecommunications standards institute (ETSI) MEC [1]. It brings
computation resources closer to UEs at the edge of the network  allowing UEs to
offload their tasks to MEC servers, mostly positioned over terrestrial base stations .



As a result, it can support ultra-low latency applications while significantly reducing 
the delay experienced and energy consumption of the UEs. However, in some 
instances (e.g., malfunction, overload, or out-of-coverage region), terrestrial MEC 
may fail to deliver reliable computation offloading and resource allocation services. 
Aerial-assisted MEC has been suggested as a promising paradigm where UAVs 
equipped with computation resources serve as an aerial base station (ABS) to 
alleviate the strain from UEs and enhance the user experience owning to the benefits 
of flexible deployment and wide coverage, as illustrated in Fig. 1, this understanding 
is in line with the standardization put forth by the third generation partnership 
project (3GPP) in Releases 17 and 18 [2]. 

 
Fig. 1. Aerial-Assisted MEC Network. 
 

The aerial-assisted MEC can significantly enhance the computational 
performance of UEs. The UEs can decide to either process the task locally or offload 
the task partially or entirely to the edge server onboard the UAV. To realize the 
benefits of edge computing, it is essential to develop an optimal computation 
offloading strategy. A poorly designed strategy might result in a substantial 
communication burden and a significant delay in transmitting the task for remote 
execution. In addition, it may cause an overload on the MEC server and drastically  
increase the entire task processing time. 

Significant research has been conducted on computation offloading in aerial-
assisted MEC networks. Reference [3] investigates the various technologies utilized 
to obtain optimal computation offloading policies. It has been observed that 
reinforcement learning (RL) is a valid artificial intelligence technique for handling the 
computation offloading problem. Since it does not require a priori knowledge of the 
environment, it can satisfy the need for real-time decision-making with minimal 
complexity and can be efficiently executed on the processor of UEs or UAVs. 
Furthermore, to speed up the training process, the parallel computation can be 
exploited using distributed architectures that can parallelize gradient descent and 
other parallelizable computations in RL. However, when numerous decision-makers 
are involved in a MEC system, a single RL agent struggles to identify an optimal 
solution. In such a situation, coordination between numerous RL agents is crucial. 
Distributed deep reinforcement learning enables coordination among agents by 
offering diverse information structures in which homogeneous or heterogeneous 
agents cooperate or compete to maximize the shared reward. Therefore, in this 



study, we present distributed deep RL-based frameworks for computation offloading 
in aerial-assisted MEC networks. 

 
2.   Challenges of computation offloading in Aerial-Assisted MEC Networks 
To enable efficient computation offloading in aerial-assisted MEC networks, certain 
challenges should be carefully addressed. In the considered scenario where multiple UEs 
are offloading their tasks among multiple UAVs, the decision-making process is very 
complex. It requires making decisions regarding the portion of a task that should be 
offloaded when partial offloading is considered and where to offload the task when both 
vertical offloading (UEs to UAV) and horizontal offloading (UAV to UAV) are considered. In 
addition, the mobility of UEs and UAVs has a significant impact on the selection of edge 
servers since it might lead to handover and coverage issues [4]. 
 The computation offloading problem is often formulated as an optimization problem 
with the objective of minimizing latency or UE's energy consumption or finding a trade-off 
between the two. To solve the optimization problem, RL is utilized in several recent studies 
to find the optimal solution. Since the defined optimization problem is usually a large-scale 
markov decision process (MDP) with high state space and continuous action, RL is 
integrated with deep learning and an actor-critic architecture is utilized to find an efficient 
solution. However, literature typically assumes a static environment with a single decision-
maker. But in the real world, multiple decision-makers are involved, which leads to new 
challenges [5]. For example, the environment is mostly non-stationary as several UEs 
offload tasks simultaneously and the availability of resources at UAVs is constantly 
changing, this having a complex decision-making process. In addition, partial observability 
should be taken in consideration while formulating the optimization problem since UEs may 
not be fully aware of the decisions made by the other UEs. Furthermore, the increase in the 
number of UEs providing MEC services may lead to scalability issues resulting in a complex 
environment and hence causes more challenging decision-making process. 

 
3.   Distributed Deep Reinforcement Learning Frameworks for Latency Optimization 
In this section, we present distributed DRL frameworks to address the computation 
offloading challenges mentioned in Section 2.  

Fig. 2 presents different distributed DRL frameworks. Considering a scenario where 
only a single agent makes decisions at a time, a parallel RL distributed learning framework 
can be exploited where multiple parallel machines can be used to accelerate the training 
process and find an efficient solution  [6]. In the aerial-assisted MEC network depicted in 
the fig. 1, UAV is the agent that takes the information about the complete environment. In 
cases where a single UAV is deployed in the environment, the above-mentioned approach 
can be utilized to design an optimal computation offloading strategy. However, when 
multiple UAVs are deployed in the environment and are taking decisions at the same time, 
different distributed learning frameworks, such as centralized training and decentralized 
execution (CTDE), independent learners (IL), and networked agents (NA), can be utilized [7].  

In CTDE, the training phase is centralized where the agents exchange information to 
learn the optimal policy. However, the execution phase is decentralized with agents 
learning policies based on their local information. This approach can overcome the issues 
related to partial observability and non-stationarity. When the above distributed learning 
framework is utilized in the aerial-assisted MEC network, the actor network requires only 
the local information of the UAV while training whereas the critic network requires 



information from all the UAVs. Therefore, during the training phase, information from all 
the UAVs is collected to find the optimal policies. Upon completion of training, during the 
execution phase, only the actor network is required to determine the best policy. Each UAV 
takes action based on its own information and designs the optimal computation offloading 
strategy. 

 
Fig. 2. Distributed DRL frameworks for Aerial-Assisted MEC Network. 

 
IL is a fully decentralized approach where both the training phase and the execution 

phase are decentralized. The agents independently examine their local information and 
optimize their policies to maximize their reward. This approach overcomes the issue of 
scalability. When this approach is utilized in aerial-assisted MEC network, each UAV takes 
action based on its own state information, ignoring the existence of the other UAV agents 
and their impact on the environment.  

With NA, the agents learn to cooperate through information exchange via a 
communication structure between the neighboring agents.  Furthermore, heterogeneous 
agents with distinct reward functions can coordinate in order to maximize their reward. This 
approach overcomes non-stationarity, partial observability and scalability. When applied in 
aerial-assisted MEC networks, a time-varying network is utilized between the neighboring 
UAVs. These interconnected UAVs cooperatively make decisions and find the optimal 
computation offloading policy. 

Finally, we present a comparative analysis in Table 1 highlighting the ability of each 
approach in relation to resolving the aforementioned challenges along with their 
limitations. 

 
Table 1. Comparative study on different distributed DRL framework for Aerial-assisted MEC 
addressing following challenges: Non-Stationarity (NS), Partial Observability (PO) and 
Scalability (SC). 

Distributed 
DRL 

Resolved challenges 
Limitations 

NS PO SC 



Framework 

Parallel RL No No No UAV collects information about the environment and 
take actions independently. Therefore, it suffers from 
non-stationarity, partial observability, and scalability 
issues. 

CTDE Yes Yes No UAVs collect information from other UAVs. 
Consequently, it suffers from scalability issues as 
the number of UAVs increases. 

IL No No Yes UAVs take action independently. Therefore, it 
suffers from non-stationarity and partial 
observability issues. 

NA Yes Yes Yes A communication network is required between the 
neighboring UAVs, which is not always feasible and 
may even increase complexity. 

 
4. Conclusion 
In this article, we focus on investigating computation offloading in aerial-assisted MEC networks. 
The dynamics of the environment and the need for coordination among UAV agents necessitate 
the adoption of distributed DRL to find an optimal offloading strategy. We present four different 
distributed architectures, including parallel RL, CTDE, IL and NA, to accelerate the training process 
and overcome issues such as non-stationarity, partial observability, and scalability. The proposed 
architectures are intended to facilitate the real-world implementation of aerial-assisted MEC. 
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