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Agenda of the Talk

• Introduction & Motivation

• A Systems perspective

• Edge Intelligent Systems

• Federated Learning

• Recent Investigations in the Intersection of ML and Edge 

Computing

• Part 1 (Primary)

• Federated Learning at the Edge Nodes

• Part 2 (Snapshot)

• Splitting of CNNs on Resource Constrained Edge Devices

• Challenges and Future Research Directions

• Conclusion
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The Buzz on Edge Computing



The 5G Vision: Three Broad Use Cases

Ref: Leading the World to 5G, Qualcomm Technologies, Inc, 2016 

The three broad use cases include enhanced mobile broadband, 

mission-critical services and massive IoT 

The three broad use cases are characterized by different 

metrics and parameters   



The 5G Architecture



The Edge Nodes Play a Key Role in Enabling 5G  



Edge Computing: Key Advantages

Low Latency

Backend 
Traffic 

Reduction

Efficient Data 
Management

Rapid Access 
to Data 

Analytics

Network Load 
Reduction

Cloud Cost 
Reduction



AI / ML / Deep Learning 
at the Edge Nodes



Learning at the Resource Constrained Edge Nodes

Resource Constrained Environment

Critical to understand the performance of the DL / FL / RL at the Edge Nodes



Design Space for Edge Intelligent Systems 



FEDERATED LEARNING:

A PRIVACY PRESERVING PARADIGM



The Buzz on Federated Learning



Applications of Federated Learning

• Application in the Healthcare Industry

• Applications for FinTech

• Applications in Insurance Sector

• Applications in IoT

• Application in other Industries and Technologies



CLASSICAL MACHINE LEARNING VERSUS 
FEDERATED LEARNING

• Central machine learning
• move the data to the computation

• Federated (machine) learning
• move the computation to the data



FEDERATED LEARNING IN A 
FAULTY EDGE ECOSYSTEM: 

ANALYSIS, MITIGATION AND APPLICATIONS

Work in Progress



Federated Learning
Distributed System with ML Model Exchange

Aggregation Algorithm

FL Key Objective: Privacy Preserving Paradigm !

EDGE NODES



Federated Learning & Network Parameters

Aggregation Algorithm

Network

Bandwidth

Data

Volume

Computation 

Power

Data Skewness

FL Performance is also a function of the System Parameters



WHAT IS THE PERFORMACE OF
FEDERATED LEARNING?



ASSUMPTIONS

■ “Synchronous” Federated Learning

■ The FL system is “Secure”

■ The architecture is “Static”



Metrics, Models and Data Sets

■ Metrics

– Accuracy

– Convergence Time

■ Diverse Data Sets

– MNIST

■ Database of handwritten digits and contains 60,000 training images 

and 10,000 testing images

– CIFAR-10

■ Consists of 60000 32x32 colour images in 10 classes, with 6000 

images per class

– IoT Security Dataset

■ From Kaggle

■ Diverse Models

– AlexNet, ResNet, LeNet, …



Simulation & Prototype Setup

■ Simulation Setup

– Pysyft

– Simulations are run on an Ubuntu 20.04 system

– 12 GB RAM, Octa-core 

– 1.5 GHz processor 16 GB Nvidia T4 GPU

■ Prototype Setup

– 8 Raspberry Pi4 devices having 4 GB RAM quad-core 1.5 GHz 

processor

– 2 RPis have a storage of 8 GB

– 2 RPis have a storage of 4 GB

– 4 RPis have a storage of 2 GB

– The aggregator is run on a Ubuntu 20.04 system with an 8 GB 

RAM and Octa-core 1.5 GHz processor

– 4 RPis (8 GB, 4 GB and two 2 GB) are connected to the aggregator 

over a WiFi network having a bandwidth of 10 Mbps

– Other four are connected through an Ethernet line of 100 Mbps



Flower: Federated Learning Framework



Impact of Worker Count on the Convergence Time for 
Different Learning Models

Left Y-axis: MNIST, Right Y-axis: CIFAR-10

Key Takeaways

• The number of worker nodes is crucial for FL model

• Optimal number of Worker Nodes for better working of the model

Homogeneous Data Distribution



Model Accuracy and Convergence Time with 
% worker nodes selected

Homogeneous Data Distribution

Key Takeaways

• At around 60% of worker nodes, A is almost similar to what it is at 100%

• On the contrary, the same 60% of nodes require C almost 25% less than what it

takes when using all worker nodes

Hereafter, for all experiments we use 60% of the total worker nodes to contribute 

to the training process

 



WHAT HAPPENS WHEN WE HAVE 
HETEROGENEITY?



Variation of Convergence Time with 
% Worker Nodes Selected for Different 

Level of Heterogeneity

Heterogeneous Data Distribution: 
Varying the Volume of Data at each Worker Node

Key Takeaways

• The minimal convergence time shifts towards a higher % Worker Nodes as the 

heterogeneity increases

• The degree of heterogeneity impacts the optimal number of worker nodes



WHAT ARE THE RIGHT 
EDGE NODE SELECTION STRATEGIES?



Convergence Time of the FL Model when the Top 
60% Nodes are Selected for 

Five Selection Strategies

MNIST and IoT Security Datasets

Selection Score (S)

Determines the top 60% Worker Nodes

Key Takeaway
S − based selection strategy converges faster than the other naive strategies



Model Accuracy and Convergence Time for the 
FL Model when a % of Worker Nodes in set Fail

Worker Failure Analysis

Key Takeaways:

• C decreases with increasing W nodes that fail, however, A decreases too!

• The learning model does not converge to the state-of-the-art accuracy for the 

given model



Accuracy of the FL model for the same Number of 
Contributing Worker Nodes for 
Failure and No-failure Cases

Key Takeaways:

• We see lower accuracy in the scenario where nodes fail

• The failed nodes might have some crucial data samples which when removed due 

to worker node failure reduces A



The Federated Fault Mitigation Algorithm
(FedFM) Run on the Aggregator



Convergence Time for FedAvg and FedFM 
in Different Scenarios

Key Takeaways: 

• Fault mitigation is crucial for any Federated Learning Ecosystem

• With FedFM we are able to improve the Convergence Time and Model Accuracy 

for an FL technique



Convergence Time vs Accuracy Plots 
for Different Scenarios with and Without Failure

Key Takeaways:

• The results highlight the utility of FedFM in IoT security applications

• Such utility is of utmost importance when there is a possibility of failure of nodes, 

which is true for any practical edge environment 



OPTIMAL NODE SELECTION
FOR FEDERATED LEARNING 

WITH NON-IID DATA



Defining Non-IITD

■ There are different ways of defining a Non-IID data 

distribution

– Attribute skew

– Label skew

– Temporal skew

– Quantity skew

■ For every class, the quantity (i.e., size of data) is different

■ Not all classes have the same data size

■ We work with quantity skewness which means that the 

training data can vary across all clients



Variation of Accuracy with Convergence Time
for Different Levels of Skewness



Key Takeaways

■ The number of worker nodes plays an integral part in the 

efficiency of an FL technique and is dependent on the 

learning model’s architecture

■ Not all nodes in the network are required for an efficient 

FL model

– Empirically, 60% of the total nodes would perform as 

well as all the available nodes in a homogeneous 

setting

■ Having a specific number of working nodes in the network 

is not the same as having the same number of nodes post 

failure as the failed nodes could have exclusive data 

samples, thus hindering the model performance

■ FedFM improves upon the existing FL techniques by 

employing fault mitigation strategies and has high utility in 

real world applications such as IoT security



Threats, Attacks and Defences 
in Federated Learning



Attack Vectors in Federated Learning



Maliciousness in Worker Nodes

■ How do we detecting Maliciousness in Worker Nodes and incorporate the 

same in selection criteria?

■ Malicious Nodes

– Nodes with wrongly labelled data 

■ The extent of the malicious nodes could be varied 

■ The number of malicious nodes and the total number of nodes could be 

varied

■ We can also test in a dynamic setting where the nodes may be initially 

benign and may start turning malicious after some internal of time

■ Ignoring such nodes becomes quite important for the selection algorithm

Malicious Nodes (X)



Incorporating Maliciousness in Worker Nodes



Fairness in Federated Learning



Fairness in Federated Learning

■ Client Selection

■ FL Model Optimization

■ FL Incentive Distribution

■ …



Challenges of Federated Learning

Heterogeneity

Privacy

Communication 
Efficiency

Model SelectionSecurity

FL at the Edge

Lack of 
Standardization



Scope for Further Extensions

■ Decentralized Federated Learning

■ Dynamic Network Architecture

■ Incorporating Fairness in Node Selection

■ Investigating different definitions of Skewness

■ Securing Federated Learning

– Additional Attack vectors 



THANK YOU

rajeevshorey@gmail.com
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