IEEE uture **NETWORKS**[™] **Enabling 5G and Beyond**

Distinguished Lecture

The Three As of the Future of Telecoms: AI, API and AR

13 September 2023

IEEE Future Networks – FutureNetworks.ieee.org

Join today! bit.ly/fntc-join

IEEE INGR Structure and Working Groups

CATEGORY	DESCRIPTION	INGR WORKING GROUP CHAPTERS
User Access	This group describes how the users reach the network	 Satellites Deployment Connecting the Unconnected (CTU)
Network Components and Performance	This group describes how the networks are interconnected	 Edge Automation Platform Massive MIMO System Optimization Optics mmWave
Systems and Standards	This group describes system standards and testability	 Standardization Building Blocks Testbed Energy Efficiency
Services and Enablers	This group represents all the elements that enable deployment, assure functionality and security and address impact on society and environment	 Security Applications and Services Artificial Intelligence and Machine Learning (AI/ML)
•••• ••• ••• ••• ••• ••• ••• ••		**** **** NGRP) NGRP) Edge Services and Automation Energy Efficiency Massive MIMO Massive MIMO
Executive Summary	exer exer exer exer exer exer exer exer	+exe INGR? INGR? Standardization Building Blocks Systems Sptimization Building Blocks Systems Sptimization Building Blocks

14 INGR Technical Working Groups

https://futurenetworks.ieee.org/roadmap

13–15 November 2023 // Baltimore, MD, USA

Call for Papers and Proposals IMAGINING THE NETWORK OF THE FUTURE Submission Deadline: 25 September (FINAL)

KEYNOTE SPEAKERS

VINT CERF VICE PRESIDENT & CHIEF INTERNET EVANGELIST GOOGLE MÉROUANE DEBBAH TECHNOLOGY INNOVATION INSTITUTE, UAE

NADA GOLMIE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST), USA

THYAGA NANDAGOPAL NATIONAL SCIENCE FOUNDATION (NSF), USA

SAIFUR RAHMAN 2023 IEEE PRESIDENT & CEO

KHALED B. LETAIEF, NEW BRIGHT PROFESSOR OF ENGINEERING AND CHAIR PROFESSOR, HKUST , HONG KONG

REGISTRATION

https://fnwf2023.ieee.org/registration

13-15 November 2023 | Baltimore, MD, USA | fnwf2023.ieee.org

Prof Mischa Dohler

Mischa Dohler is VP Emerging Technologies at Ericsson Inc. in Silicon Valley, working on cutting-edge topics of 6G, Metaverse, XR, Quantum and Blockchain. He serves on the Technical Advisory Committee of the FCC and on the Spectrum Advisory Board of Ofcom.

He is a Fellow of the IEEE, the Royal Academy of Engineering, the Royal Society of Arts (RSA), the Institution of Engineering and Technology (IET); and a Distinguished Member of Harvard Square Leaders Excellence. He is a serial entrepreneur with 5 companies; composer & pianist with 5 albums on Spotify/iTunes; and fluent in several languages. He has had ample coverage by national and international press and media and is featured on Amazon Prime.

Supercharge 6G with AAA

Prof Mischa Dohler

Fellow IEEE, Fellow Royal Academy of Engineering, Fellow Royal Society of the Arts

VP Emerging Tech, Ericsson Inc, Silicon Valley Advisory Board, FCC (TAC) & Ofcom (Spectrum) Visiting Professor, King's College London

Sept 2023

Let's Get The Roadmap Right!

Where Do We Want To Be In 2030?

Possible 6G Use-Cases:

- "Holographic Society" and Merged Realities
- Massive Digital Twinning and JCAS
- Situational Awareness and Reprogramming of Cyber-Physical Worlds
- Efficient and Pervasive Mobile Broadband
- Sustainability and e-Health

Supercharge 6G With «AAA»

01 AI in 6G Networks

An overview of Artificial Intelligence in 6G Networks, across OSI Layers and operations.

Roadmap Towards Native-AI 6G Networks

"AI moves fast, which means incumbents don't have a big advantage over new-joiners," Jason W., 2023.

Manual & reactive

Fully automated & pro-active

Customer experience / quality / efficiency

Towards Native-AI 6G Protocol Stack

Today

Target

Generative AI In 6G Systems

A. Karapantelakis, et al. "Generative AI in mobile networks: a survey," Annals of Telecoms, July 2023

Trustworthy AI In 6G Systems

https://www.ericsson.com/en/reports-and-papers/white-papers/trustworthy-ai

02 API in Future Networks

An overview of APIs in 5G SA & Beyond Networks and their value towards monetization in telecoms.

Opening Up Telco Networks To App Devs

- Making it easy for developers to use and bundle API services in 5G SA & Beyond
- Exposing communication services and new advanced network functionality through easy-to-use APIs
- Enable native monetization in telco networks

Communication & Network APIs

Worldwide 5G and future 6G networks

03 AR in Future Networks

An overview of AR in 5G SA & Beyond Networks and their value as a unique 6G use-case.

Our AR Predictions In The 5G & 6G Era

Likely scenario development:

- VR/MR, simple AR
- Static, on device, tethered
- Starts with local deployments

- 5G-native AR takes lead
- Local \rightarrow wide area networks
- >1m users per AR app

- Global adoption with >1bn users
- Stand-alone, cloud, multi-user
- Privacy will be key

Ericsson's 5G "Holotaring" AR Prototype

Imagine Live Kick Off 2022 – Ericsson, MWC 2022 & 2023

| Prof Mischa Dohler | Page 16 of 30 |

Tech Innovation: Edge-Cloud Rendered AR

HMD (+phone)

Telco Operator

Cloud & App Providers

	Device-Rendered Content	MEC-Rendered Content
GPU	<1 W processing power	350 W
Memory	Limited	Unlimited
Battery	Significant Drain	2x-7x Saving
Connectivity	MBB 10kbps-1MBps	TCC 0.1-10s Mbps & 10-40ms RTT & 3ms jitter

Native "E2E System Low Latency" In 6G

04 6G Technologies

An overview of underpinning 6G technologies and architecture approach.

Ericsson's 6G Technology Focus

Nov 2022 Blog: <u>Why it's a great time to start talking 6G – Ericsson</u> Feb 2023 Blog: <u>Nine takeaways from early 6G research - Ericsson</u>

6G — Connecting a cyber-physical world

Multi-Layer Spectrum In 6G

6G Coverage & Capacity Comparison

Essential centimeter wave

Complementary sub-THz

6G Zero-Energy Devices

6G Joint Communications & Sensing (JCAS)

- Every peak channel impulse response
 = f{distance & angle}
- Frequency: 60 GHz
- Bandwidth: 2 GHz
- Number of antennas 25x25 = 625
- Antenna spacing: 0.4 λ
- Distance between Tx and Rx: 1.5m

Overall 6G Architecture Approach

- Alignment within industry on <u>key migration path</u> prior to start of standardization
- <u>Enable fast deployment of SA 6G</u> by avoiding unnecessary deployment options

- Aim to <u>simplify the 6G</u> <u>architecture</u>, by aligning industry on key interfaces for standardization
- <u>Reuse investment in 5GC</u>, allowing smoother 6G introduction, and alignment of migration paths

Network Horizontalization Central To 6G

- Native separation of NFs from underlying platform, and overlaying management and exposure
- Beneficial to the continuous evolution of underlying platform technologies (from IT eco-system)

6G Testbed Proof-Points

6G Digital Twin

Zero-Energy Joint Sensing-Comms

Centimetric 6G Communications

05 Concluding Remarks

A non-exhaustive summary of key findings towards a successful implementation of 6G.

Summary of (Some) Gaps Towards 6G

6G Architecture & Overall Approach:

- * Embrace new capabilities yet simplify 6G architecture & deployment options
- * Supercharge 6G with AAA, i.e. AI, API and AR

$\underline{AI} - Artificial Intelligence:$

- * Develop methodologies & standards towards interoperable AI
- * Significantly expand R&D and standards on Trustworthy AI

<u>A</u>PI – Application Protocol Interface:

- * Expand Beyond-5G architecture work to natively include horizontal architecture
- * Natively embed monetization capabilities into 6G via APIs

<u>A</u>R – Augmented Reality:

- * Make a big bet on a next "iPhone moment"; ensure e2e design on all what this use-case needs
- * Ensure consistent QoE, through consistent RAN, CN and E2E MECs

ericsson.com/future-technologies

UPCOMING EVENTS

IEEE Future Networks Webinar - 20 September 2023 - 11:00 am ET Finger on the Pulse: Updating the Roadmap to 5G & Beyond (5G&B)

IEEE

21-22 September

Enabling 5G and Beyond | FutureNetworks.ieee.org

IEEE Future Networks

Be connected to IEEE Future Networks to shape future network requirements Get monthly updates on technical workshops, summits, webinars, podcasts, and call for proposals, papers, and volunteer opportunities Thousands are already members Join today: bit.ly/fntc-join

