SECURITY CONSIDERATIONS FOR MOBILE EDGE COMPUTING

Rajeev Shorey (PhD)

Fellow INAE, Distinguished Scientist ACM Distinguished Lecturer, IEEE Future Networks TC

> CSE Department Indian Institute of Technology, Delhi India

> > LSU 16 November 2023

abling 5G and Beyond | FutureNetworks.ieee.org

IEEE Future Networks – FutureNetworks.ieee.org

Join today! bit.ly/fntc-join

0

IEEE Future Networks

Be connected to IEEE Future Networks to shape future network requirements Get monthly updates on technical workshops, summits, webinars, podcasts, and call for proposals, papers, and volunteer opportunities Thousands are already members Join today: bit.ly/fntc-join

Enabling 5G and Beyond | FutureNetworks.ieee.org

Agenda of the Tutorial

- Introduction & Motivation
- Mobile Edge Security (MEC)
- MEC Architecture
- Security issues in Emerging Edge Paradigms
 - Federated Learning
 - Reinforcement Learning
- Summary and Future Directions

The Buzz on Edge Computing

Edge Computing

Edge Computing | News, how-tos, features, reviews, and videos

DATA CENTER EXPLORER By Andy Patrizio Intel details FPGA roadmap

IBM, Bharti Airtel partner on edge cloud offerings in India

McLaren Racing relies on edge computing at Formula 1 tracks

McLaren's Formula 1 racing team securely delivers apps and data to track crews and guests via VMware Workspace ONE.

DATA CENTER EXPLORER By Andy Patrizio

HPE to ship a dedicated inference server for the edge

The small form factor HPE Edgeline EL8000 is designed for AI tasks such as computer vision and natural-language processing.

Products & Solutions Why Akamai Resources

Solutions > Edge Compute

Edge Compute Solutions

Innovate in real time. With the world's largest serverless compute platform, Akamai puts your code closer to your users.

Edge Computing

Edge Computing | News, how-tos, features, reviews, and videos

CLOUD COMPUTING By David Linthicum Cloud computing is reinventing cars and trucks

CLOUD COMPUTING By David Linthicum The dirty little secret about edge computing

NEW TECH FORUM

Why edge computing matters for modern software development

The next stage of cloud computing brings computing power

closer to users, paving the way to better user experiences and

more intelligent applications.

Edge Computing Spend

- Report by Market research firm IDC
- Edge computing spend is expected to surpass \$300 billion by 2026, with a compound annual growth rate of 15% during the three year period
- Edge computing spend to be \$208 billion in 2023, a 13.1% increase on 2022 spend !

The 5G Vision: Three Broad Use Cases

The three broad use cases include enhanced mobile broadband, mission-critical services and massive IoT

Ref: Leading the World to 5G, Qualcomm Technologies, Inc, 2016 The three broad use cases are characterized by different metrics and parameters

The Edge Nodes Play a Key Role in Enabling 5G

The 5G Architecture

5G ARCHITECTURE DISTRIBUTED CORE, MESH CONNECTIVITY

Edge Computing: Key Advantages

AI / ML / Deep Learning at the Edge Nodes

Learning at the Resource Constrained Edge Nodes

Resource Constrained Environment

Edge Computing

Security is critical when running ML / DL at the Edge

Design Space for Edge Intelligent Systems

MEC ARCHITECTURE

Secure Three Layer MEC Architecture

Reference: "Security in IoT-Driven Mobile Edge Computing: New Paradigms, Challenges, and Opportunities", S. Garg et al, IEEE Network, Sept/Oct 2021

CHALLENGES TO THE MEC PARADIGM

- Access control
- Heterogeneity of MEC systems
- Identity authentication
- Privacy preservation
- Secure data aggregation
- Mis-configurations
- Diversity of communication technologies
- Secure content distribution
- Resilience to attacks
- Lightweight protocol design
- Establishing trustworthy data sharing practices

CHALLENGES TO THE MEC PARADIGM

- The lack of comprehensive security mechanisms render the deployment of MEC a technically challenging problem
- The security goals of MEC should be grounded on a combined objective of securing the data and ensuring the safety and resiliency of systems and processes
 - Confidentiality
 - Integrity
 - Availability
 - Safety
 - Resiliency

Proposed SecEdge-Learn MEC Architecture

Reference: "Security in IoT-Driven Mobile Edge Computing: New Paradigms, Challenges, and Opportunities", S. Garg et al, IEEE Network, Sept/Oct 2021

Sequence of Activities in SecEdge-Learn

Reference: "Security in IoT-Driven Mobile Edge Computing: New Paradigms, Challenges, and Opportunities", S. Garg et al, IEEE Network, Sept/Oct 2021

EMERGING PARADIGMS AT THE EDGE

FEDERATED LEARNING

A PRIVACY PRESERVING PARADIGM

The Buzz on Federated Learning

The Global Federated Learning Market size is expected to reach \$198.7 Million by 2028, rising at a market growth of 11.1% CAGR during the forecast period

Collaborative machine learning that preserves privacy

Researchers increase the accuracy and efficiency of a machine-learning method that safeguards user data.

Adam Zewe | MIT News Office September 7, 2022

Applications of Federated Learning

- Application in the Healthcare Industry
- Applications for FinTech
- Applications in Insurance Sector
- Applications in IoT
- Application in other Industries and Technologies

CLASSICAL MACHINE LEARNING VERSUS FEDERATED LEARNING

- Central machine learning
 - move the data to the computation
- Federated (machine) learning
 - move the computation to the data

Federated Learning Distributed System with ML Model Exchange

FL Key Objective: Privacy Preserving Paradigm !

Federated Learning & Network Parameters

FL Performance is also a function of the System Parameters

Challenges of Federated Learning

Threats, Attacks and Defences in Federated Learning

Taxonomy of Attacks on Federated Learning Systems

Attack Vectors in Federated Learning

Attack Vectors in Federated Learning

Data Poisoning Attack in Federated Learning Systems

An Example of GANs-based Inference Attack in FL Systems

Federated Learning Systems: Challenges

FL server FL server E Low Client₄ bandwidth Discarded Noisy clients update Client₂ Client₁ Free-rider Client₃ ---Download Fake Upload XX XX model updates (Compression model updates model updates Client₁ Client,

Communications bottlenecks in FL systems

An example of free-riding attack in FL systems

An Overview of Defensive Mechanisms in FL Systems

Federated Learning Defensive Mechanisms

Defensive mechanisms	Key idea	Attacks
Differential Privacy	Introduce noise to the client's sensitive data before sharing individual updates with the FL server	 Data poisoning attacks Backdoor attacks Inference attacks
Secure Multi-party Computation	Encrypt clients' uploaded parameters	Inference attacksMITM attacks
Anomaly detection	Analyze clients' updates to identify misbehaving clients	 Free-riding attacks Model poisoning attacks Data poisoning attacks
Robust aggregation	Detect malicious individual updates during training process	Inference attacksModel poisoning attacksData poisoning attacks
Federated distillation	Transfer knowledge from afully trained model to another model	 Communications bottlenecks MITM attacks Inference attacks GANs-based attacks

Maliciousness in Worker Nodes

- How do we detect Maliciousness in Worker Nodes and incorporate the same in selection criteria?
- Malicious Nodes Definition
 - e.g.: Nodes with wrongly labelled data
- The extent of the malicious nodes could be varied
- The number of malicious nodes and the total number of nodes could be varied
- We can also test in a dynamic setting where the nodes may be initially benign and may start turning malicious after some internal of time
- Ignoring such nodes becomes quite important for the selection algorithm

Incorporating Maliciousness in Worker Nodes: Swap the Labels

Local Model Loss for Malicious Node Detection

Total Worker Nodes: 20 Malicious Nodes: 4 (Labels swapped) Data Distribution: Homogeneous Dataset: MNIST

Considerably higher local model loss values for malicious nodes

Data Poisoning Attacks

Gradient Poisoning Attacks

Round

EMERGING PARADIGMS AT THE EDGE

REINFORCEMENT LEARNING

Work in Progress

Fundamentals

- Supervised learning
 - classification, regression
- Unsupervised learning
 - clustering
- Reinforcement learning
 - more general than supervised/unsupervised learning
 - learn from interaction w/ environment to achieve a goal

New Challenges in Reinforcement Learning: A Survey of Security and Privacy

Yunjiao Lei¹, Dayong Ye¹, Sheng Shen¹, Yulei Sui¹, Tianqing Zhu^{1*} and Wanlei Zhou²

^{1*}School of Computer Science, University of Technology Sydney, Broadway, Sydney, 2007, NSW, Australia.
^{2*}School of Data Science, City University of Macau, Macau, China.

Springer Nature 2021

An Autonomous Driving Scenario

The green car is an agent. the environment comprises the road, the trac signs, other cars, etc.

A Simple Example of a Security Attack in Reinforcement Learning in the Context of Automatic Driving

Summary of Research Addressing Security in Reinforcement Learning

Subsection	Papers	Target	Impact	Strategies	Representative Methods
Security of state and action in MDP	Lee et al. [58]	Action	Reward	Perturbations	Optimization-based approaches Projected gradient descent
	Chen et al. [56]	Action	Policy	Action robustness	Zero-sum game Nash equilibriumt
	Zhao et al. $[45]$	State	Policy Action	Perturbations	Imitation learning
	Garrett et al. [64]	State	System destabilization	Perturbations	Z tables
	Sun et al. [40]	State	Reward, Action	Perturbations	Prediction model Neural network
	Ye et al. [57]	State	Action	Model learning	Deep neural network
	Dai et al. [65]	State-action	Policy	Safe exploration	Convolutional neural network Transfer learning
	Rakhsha et al. [43]	Transition dynamics / rewards	Policy	Data poisoning	Optimization problems having constraints
Security of environment in MDP	Chan et al. [59]	Features	Reward	Adversarial sample	Sliding-window method Gradient function
	Wang et al. [22]	Environment	Robust policy	Robust adversarial learning	Cross-entropy method Actor-critic architecture
	Li et al. [46]	Non-stationary environment	Robust policies	Robust adversarial learning	Minimax optimization End-to-end learning approach
	Lin et al. [44]	Features	Action	Adversarial sample	Gradient-based methods
	Li et al. [66]	Environment	Policy	Two-player zero-sum game	Nash equilibrium
	Zhai et al. [67]	Environment	Policy	Two-player	Nash equilibrium
				zero-sum game	Lyapunov network
Security of	Zhang et al. [54]	Reward	Policy	Poisoning attack	Optimal control
reward function in MDP	Li et al. [68]	Reward	Policy	Adversarial inverse reinforcement learning	problems Imitation learning Entropy regularization term

Key Findings of the Edge Security Report

- Edge deployments are increasing in scale across investments, projects, use cases, endpoints and types of endpoints
- Security is the top challenge cited by enterprises with edge deployments
- Risks to edge systems such as cyberattacks and from edge systems due to vulnerabilities and misconfigurations are on the rise

Reference:

https://www.redhat.com/en/resources/state-of-edge-security-report-overview

Summary and Future Directions

- MEC Security is a critical area that needs a lot more attention considering the huge growth of the Edge
- New paradigms at the Edge such as Federated Learning, Reinforcement Learning, etc are likely to spawn additional attack surfaces and attack vectors
- Need robust mitigation of the attacks since Edge nodes will become more complex with each passing year

THANK YOU

rajeevshorey@gmail.com