NSF Support for Next Generation Wireless Networks and Dynamic Spectrum Sharing Dr. Alex Sprintson National Science Foundation

Platforms for Advanced Wireless Research Wireless Mid Scale Research Infrastructure for Research and Experimentation

https://www.advancedwireless.org/

Charter Members

Northeastern University

What is Colosseum? ~~~ SP

Colosseum is the **world's largest** wireless network emulator with granularity at the RF signal level

- 256 x 256 100 MHz RF channel emulation
- 128 Programmable Radio Nodes
- Computing resources (CPU, GPU, FPGA)
- Access control and scheduling infrastructure
- Supports remote shared access
- Colosseum is a General Purpose Cooperative Radio Development and Testing Environment
- <u>https://www.darpa.mil/program/spectrum-collaboration-</u> challenge

Northeastern University Colosseum Architecture

PAWR Project Office

Northeastern University

Traffic System

Envisioned Experiment LifeCycle

Experiment in the (local) lab through simulation/small scale experiments

Experiment in the "wild" through PAWR Platform Experiment in controlled emulated environment through Colosseum

PAWR Awardees

Announced April 9 2018

Round I Platforms

Salt Lake City

http://powderwireless.net

http://cosmos-lab.org

POWDER: Platform for Open Wireless Data-driven Experimental Research

UNIVERSITY OF UTAH*

- Next Generation Wireless Architecture
- Dynamic Spectrum Sharing
- Distinct environments: a dense urban downtown and a hilly campus environment.

t. 00

Deployment Area: UofU Campus +Downtown SLC + Connected Corridor

RENEW: A Reconfigurable Ecosystem for Next-generation End-toend Wireless

- RENEW Massive MIMO base station
- End-to-End Programmable
- Diverse Spectrum Access 50 MHz-3.8GHz
- Hybrid Edge computer composed of FPGA and GPU/CPU-based processing,
- Hub Board aggregates/distributes streams of radio samples

IRIS softwaredefined radio modules

Truly City scale...

RENEW Massive-MIMO Base Stations

- Iris SDR is the building block
- 64-128 antennas
 - Next gen design targets 256antennas
- 40 Gbps Ethernet backhaul through fiber
 - Next gen design targets 100Gbps link
- HW Built-in Clock Sync
 - Support for SyncE/PTP underway

Pilot POWDER Network (Available Today)

8 Rooftop Base station and Fixed End Point sites

Software Profiles Available:

- Open Air Interface
- Worked with ONF to provide basic XRAN functionality in OAI
- Open Network Automation Platform (ONAP) [LF]
- Converged Multi-Access and Core (COMAC)/Open Mobile Evolved Core (OMEC) [ONF] - Akraino Edge Stack, Radio Edge Control (REC)
- RAN Intelligent Controller (RIC)
- O-RAN [O-RAN Alliance]

COSMOS:Cloud Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment

- A multi-layered computing system with an RF thin client; flexible signal processing; network function virtualization (NFV) between a local SDR (with FPGA assist) and a remote cloud radio access network (CRAN) with massive CPU/GPU and FPGA assist
- Deployed in New York City, one of the country's most populated urban centers
- Wideband radio signal processing (with bandwidths of ~500 MHz or more)
- Support for mmWave communication (28 and 60 GHz)
- Optical switching technology (~1µs) provides passive WDM switch fabrics and
- radio over fiber interfaces for ultra-low latency connections

Deployment Area: West Manhattan/Harlem

COSMOS Radio Site Design

All-Optical Network Design

COLUMBIA UNIVERSITY

NYU

RUTGERS

COSMOS mmWave Node Specifications

- 64-dual polarized antennas and 4 ICs each with 32 TRX elements
- 128 TRX elements in total
- 8 independent 16-element beamformers, each supporting 1 polarization of 16 ant.
- RF true time delay based architecture
- 28GHz RF, 5GHz ext. LO, 3GHz input/output IF
- 54dBm saturated EIRP on each polarization

© 2018 IBM Corporation

PAWR Project Offic

corporate feed

FaceBook TerraGraph 60GHz-Antenna Panel

Back: RFICs connecting to antenna feeds

Front: Phased array antenna

36 RF feeds (independently controlled phase shifters)

Pilot COSMOS Network (Available Today)

Base Configuration

- 2 Large and 3 Medium Nodes
- 16 port Space Switch
 - ROADMs: 1 fiber pair each, 2 total
 - Direct CRF connections: 6 fiber pairs
 - Eth Switch: 2 fiber pairs

Round II PAWR Awardee

Announced September 18, 2019

Research Triangle

https://aerpaw.org/

Aerial Experimentation and Research Platform for Advanced Wireless (AERPAW)

Goals

- Accelerate the integration of UAS into the national air-space
- Enable new advanced wireless features for UAS platforms, including flying base stations for hot spot wireless connectivity

Focus areas

- Advanced wireless communication technologies that enable beyond-VLOS and autonomous UAS operations and three-dimensional mobility for UAS
- New use cases for advanced wireless technologies that are emerging in the unmanned aerial systems (UAS) space

Tactics

- Create a one-of-a-kind aerial wireless experimentation platform and a proving ground and technological enabler for emerging innovations, including package delivery platforms and urban air mobility
- Accelerate development, verification, and testing of transformative advances and breakthroughs in telecommunications, transportation, infrastructure monitoring, agriculture, and public safety

AERPAW at a glance

- Led by North Carolina State University (NCSU) with three other universities
- Start date 9/01/2019
- NSF award of **\$9,094,403** over 5 years
- Estimated Industry Consortium cash and in-kind match of up to **\$10M**, including major contributions from:
 - National Instruments, Keysight, Ericsson, Commscope
 - Private spectrum licensees
- Approximately 20 fixed nodes at 3 main sites in the RDU Triangle area
- 20+ unmanned autonomous vehicles (drones) with advanced wireless tech through the coverage area

AERPAW deployment plans

PAWR Project Office

Looking Ahead: Shift in Focus

Rural Broadband to drive Technical Requirements

- Open-ended for emerging and frontier ideas
- Focus on architectures questions assumptions
- Provide solutions and specifications as well as relevant trade-offs and implications;
- Looking for various possible solutions to particular challenges

COME JOIN US

http://powderwireless.net http://renew.rice.edu POWDER-RENEW

http://cosmos-lab.org COSMOS

http://aerpaw.org AERPAW

http://advancedwireless.org PAWR Project

Multi-Dimensional Drone Communications Infrastructure (MuDDI)

PI: Joseph Camp, Southern Methodist University http://muddi.lyle.smu.edu

Next-Generation, Sustainable Infrastructure for the RF-Powered Computing Community

PI: Joshua Smith, University of Washington

(a) Ambient Backscatter devices

(b) Battery-free phone

The WISPCam (Wireless Identification and Sensing Platform Camera) tag.

CRI: II-New: Mobile Millimeter-wave MIMO Network Based on CMU Chipscale Beamformers

PI: Larry Carley, Carnegie Mellon University

CMU Chipscale Beamforming Transceivers.

CHRONOS: A Cloud based Hybrid RF-Optical Network Over Synchronous Links

