5G eMBB is Here! More 5G is Coming!

Ed Tiedemann
Senior Vice-President, Engineering
Qualcomm Technologies, Inc.

2nd Workshop on 5G Technologies for Tactical and First Responder Networks
The Johns Hopkins University Applied Physical Laboratory
7 October 2019
5G global rollout

30+ launched in 6 months
Faster than 4G
<table>
<thead>
<tr>
<th>600MHz (2x35MHz)</th>
<th>2.5GHz (LTE B41)</th>
<th>3.45-3.55GHz</th>
<th>3.55-3.7GHz</th>
<th>3.7-4.2GHz</th>
<th>5.9-7.1GHz</th>
<th>24.25-24.45GHz</th>
<th>24.75-25.25GHz</th>
<th>27.5-28.35GHz</th>
<th>37-37.6GHz</th>
<th>37.6-40GHz</th>
<th>64-71GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>600MHz (2x35MHz)</td>
<td>3.5-3.7GHz</td>
<td></td>
</tr>
<tr>
<td>600MHz (2x35MHz)</td>
<td>3.45-3.55GHz</td>
<td>3.55-3.7GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700MHz (2x30 MHz)</td>
<td>3.4-3.8GHz</td>
<td></td>
</tr>
<tr>
<td>700MHz (2x30 MHz)</td>
<td>3.4-3.8GHz</td>
<td></td>
</tr>
<tr>
<td>700MHz (2x30 MHz)</td>
<td>3.4-3.8GHz</td>
<td></td>
</tr>
<tr>
<td>700MHz (2x30 MHz)</td>
<td>3.4-3.8GHz</td>
<td></td>
</tr>
<tr>
<td>700MHz (2x30 MHz)</td>
<td>3.4-3.8GHz</td>
<td></td>
</tr>
<tr>
<td>700MHz (2x30 MHz)</td>
<td>3.4-3.8GHz</td>
<td></td>
</tr>
<tr>
<td>2.5GHz (LTE B41)</td>
<td>3.3-3.6GHz</td>
<td>4.8-5GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5GHz (LTE B41)</td>
<td>3.42-3.7GHz</td>
<td></td>
</tr>
<tr>
<td>2.5GHz (LTE B41)</td>
<td>3.6-4.1GHz</td>
<td>4.5-4.8GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5GHz (LTE B41)</td>
<td>3.4-3.7GHz</td>
<td></td>
</tr>
</tbody>
</table>

Designed for diverse spectrum bands/types

Global snapshot of 5G spectrum bands allocated or targeted.
5G smartphones

- Lenovo Z6 Pro 5G
- LG V50 ThinQ 5G
- Motorola moto z²/z³ + 5G moto mod
- Nubia Mini 5G
- OnePlus 7 Pro 5G
- OPPO Reno 5G
- Samsung Galaxy S10 5G
- Samsung Galaxy Fold
- Samsung Galaxy Note10+ 5G
- Samsung A90 5G
- Vivo iQOO 5G Edition
- Vivo NEX 3 5G
- Xiaomi Mi MIX 5G
- ZTE Axon 10 Pro 5G

Hotspots and CPEs

- Askey
- Inseego
- HTC
- Netcomm
- Netgear
- Nokia
- WNC
- ZTE

5G modules

- Compal
- Fibocom
- Longsung
- Quectel
- Sierra Wireless
- SIMcom
- Telit

150+ 5G devices launched or in development

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
Comprehensive 5G modem-RF solutions

Qualcomm Snapdragon X50 5G modem-RF system

1st gen
- Sub-6 and mmWave
- NSA, TDD, Multi-SIM
- Qualcomm® 5G PowerSave
- Qualcomm® Smart Transmit
- Qualcomm® Signal Boost

Early 2019
First wave of devices

Qualcomm Snapdragon X55 5G modem-RF system

2nd gen
Added features
- Integrated 5G to 2G
- Standalone (SA), FDD
- Dynamic Spectrum Sharing
- Qualcomm® Wideband Envelope Tracking
- Platforms for PC, fixed wireless access, automotive, and more

Late 2019
Second wave

Snapdragon 8,7,6 Series Mobile Platforms

1st half 2020
Broader, faster adoption

System-level integration delivers best-in-class power-efficiency and performance

Qualcomm 5G PowerSave, Smart Transmit, Signal Boost and Wideband Envelope Tracking are products of Qualcomm Technologies, Inc. and/or its subsidiaries
Optimization through co-design of hardware and software

Qualcomm 5G PowerSave, Qualcomm Wideband Envelope Tracking and Qualcomm Signal Boost are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
A technology; a state of mind
A platform for new applications and innovations

Scalable to extreme simplicity

On-device intelligence

Multi-gigabit speed

Extreme reliability

Ultra-low latency

Virtually unlimited capacity
Designing a unified, more capable 5G air interface

Diverse services

High-bands
Above 24 GHz (mmWave)

Mid-bands
1 GHz to 6 GHz

Low-bands
Below 1 GHz

Licensed/shared/unlicensed

Existing, emerging, and unforeseen services - a platform for future innovation
The 5G expansion

- Rel.15 eMBB expansion
- Rel.16-17

- Private networks
- 5G massive IoT
- 5G broadcast
- mmWave evolution, indoor, enterprises
- Sub-6 GHz evolution, new use case
- Fixed wireless access
- Smartphones
- Laptops
- Automotive
- Industrial IoT with eURLLC
- 5G NR C-V2X, smart transportation
- Future verticals, services, devices
- Shared / unlicensed spectrum
- New device classes like tethered XR
- New device classes like boundless XR
5G is the innovation platform for the next decade

- A unified future-proof platform
- Delivering on the 5G vision
- New deployments, new spectrum, new use cases, new verticals...
- Some future requirements only possible on a new platform

Market needs: enhanced/emerging/unknown services to 5G

- Vision forming
- Historically 10 years between generations
- Next technology leap for new capabilities and reduced cost
- Continued evolution

Research: for 5G enhancements and for next gen. leap

Technology breakthroughs, hardware progress, new architectures, distribution of processing/AI/content...
Continuous research, industry first over-the-air LAA, eLAA, MulteFire demos, interoperability with Wi-Fi
Multiple spectrum options
For private 5G networks

Licensed spectrum by mobile operators
Operators can allocate spectrum in a specific area

Dedicated regional spectrum
Regional spectrum such as 3.7GHz in Germany for IIoT

Unlicensed spectrum with async sharing
NR-U with asynchronous sharing work for many applications

Unlicensed spectrum with synch sharing
Synchronized sharing can provide reliability and eURLLC for IIoT
Accelerating the expansion of 5G network with small cells

Powered by Qualcomm® FSM™ small cell platforms

Capable of being developed to utilize mmWave and sub-6 GHz

Supporting uniform 5G speeds and experiences, indoors and outdoors

Expected to begin sampling in 2020
Disaggregated Radio Access Networks

- Industry focused on **disaggregation of the radio access network** for 4G+5G
- Goals are to lower cost of network and lessen dependence on traditional infrastructure suppliers
 - Encouraging new suppliers + open source development
- **RAN disaggregation:**
 - Monolithic RAN functions moved to a new disaggregated design allowing the underlying RAN to be more efficiently and flexibly deployed. e.gNB software decoupled from white box hardware.
 - Open standardized interfaces with multiple vendor support.
- Key industry groups are 3GPP, Open RAN Alliance (O-RAN), Telecom Infra Project (TIP) and the Small Cell Forum (SCF)
3GPP and Public Safety

What happened so far, what will happen next..

- 3GPP did extensive work developing public safety related enablers since Rel.12 (for LTE/EPS):
 - New QoS parameters for public safety application
 - Group communication using MBMS
 - Sidelink communication/Proximity Services inc. sidelink relays
 - Mission critical applications (MC PTT, MC Data, MC Video)

- NR and 5G system already supports the related QoS framework for unicast Mission critical applications (since Rel.15) but does not yet support any of the more “advanced” enablers

- For the Rel.17 package which is currently being scoped in 3GPP several of the more advanced enablers required for public safety are considered, namely sidelink communication using NR, multicast/broadcast architecture using NR and 5GS, various forms of sidelink relays
 - Work on sidelink done for V2X in rel.16 will be used as baseline

- 3GPP already has an ongoing activity to adapt existing MC applications to 5GS and potentially expand to new ones also
Enhanced network communication
Faster access to cloud for in-vehicle experiences, car OEM services and telematics

New direct communication
V2V, V2I, and V2P communications for latency-sensitive use-cases, e.g. collision avoidance

Massive Internet of Things
Deeper coverage to connect road infrastructure (e.g. sensors and traffic cameras)

3GPP is Enhancng C-V2X (Rel. 14/15 LTE-V2X) by NR-V2X
Rel-14 C-V2X
Broadcast without feedback, which can’t ensure reliability.

Rel-16 5G NR C-V2X
Multicast with feedback for higher reliability; if signal can’t be decoded, NACKs are sent on the same radio resources (SFN-like approach).

Multicast support for higher reliability
HARQ feedback to achieve higher reliability | Introducing efficiency by sending only NACKs using SFN
Connectionless ‘on-the-fly’ distance-based groups

Vehicles within a certain distance and interested in same services form a group
5G NR C-V2X builds on existing frameworks and facilitates a new paradigm of communication design.

Facilitating a new paradigm of communication design
- Efficient sidelink link level design for optimized performance at all speeds
- Connectionless ‘on-the-fly’ distance-based groups
- Multicast with distance-based reliability and application relevancy

Adapting R15 5G NR flexible framework to vehicles
- Scalable OFDM-based air interface
 - Such as wideband carrier support (>20 MHz) and different sub-carrier spacing
- Flexible slot-based framework
 - Such as adding sidelink and dynamic reference signal for various speed
- Advanced channel coding
 - State of the art LDPC/polar coding to deliver performance

Building on R14/15 C-V2X framework with backward compatibility
- Such as frequency division multiplexing, guaranteed latency performance and prioritization support
Expanding 5G with the flexible slot-based framework

- Dynamic spectrum sharing (Rel-15+)
- Broadcast/enTV (Rel-16+)
- Cellular V2X–network side shown (Rel-16+)
- Wide-area mission-critical (Rel-15/16+)
- Massive IoT (Rel-16+)

- 5G NR eMBB
- LTE
- Sidelink
- Blank subcarriers
- C-V2X
- Blank slot
- Broadcast/enTV
- Cellular V2X
- Integrated access and backhaul (Rel-16+) for mmWave only (not shown)

- Enhanced mobile broadband (Rel-15+)
- Sidelink (Rel-17+), e.g., for offload
- Unknown service not yet defined

- Expanding 5G with the flexible slot-based framework

- NR-Light
- eMTC
- NB-IoT
- Massive IoT

- NR-Light (Rel-17+)
Thank you

Follow us on:
For more information, visit us at:
www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2019 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm’s licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm’s engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.