

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT

COMMAND -C5ISR CENTER

Leveraging 5G Networks for Tactical Army Communications: The Good, The Bad, and The Ugly

Jack L. Burbank

Senior Wireless Network Engineer

Sabre Systems, Inc.

Space and Terrestrial Communications Directorate (S&TCD)

Tactical Communications Division, Commercial Technology Evaluation and Integration Branch

7 October 2019

Workshop on 5G Technologies for Tactical and First Responder Networks

October 7, 2019, 8:00 AM-6:00 PM

Johns Hopkins Applied Physics Laboratory, Laurel, Maryland

workshop will be the catalyst to develop relevant use cases, drive standards, investigate deployment suitable for tactical and first responders.

OUTLINE

- Introduction
- Benefits of 5G
- Key 5G Technology Enablers
- Potential 5G Use Cases
- Historical Challenges of Tactical Cellular
- Areas of Consideration for Tactical 5G
- Conclusions

INTRODUCTION

- 5G technology is extremely exciting for the field of communications
- Has the potential to enable massive social and technical change
- Expected to become a disruptive set of technologies
- Tactical military community would naturally love to leverage these capabilities to better serve the Warfighter

- Commercial cellular technologies have, to date, proven somewhat elusive in terms of adopting for tactical military usage
- Some key challenge areas that have persisted across many generations of cellular
- 5G expected to provide solutions to alleviate some of these challenge areas

- There remains multiple areas of consideration that likely requires technology and policy maturation before 5G can be effective as a tactical communications solution
- However, overall...5G holds great promise and should be explored more fully for tactical applications

THE BENEFITS OF 5G: DATA RATE

https://developer.samsung.com/tech-insights/5G/5g-requirements

https://policyforum.att.com/wp-content/uploads/2018/11/5G_Competition_Based_Model_1.pdf

THE BENEFITS OF 5G: A LOT MORE THAN JUST INCREASED DATA RATES

ITU-R M.2083-0, 09/2015

5G USE CASES

Enhanced Mobile Broadband

"Setting the scene for 5G: Opportunities & Challenges," ITU Discussion Paper, July 2018.

SOME KEY 5G TECHNOLOGY ENABLERS

Spectrum

New spectrum access enables higher data rates and more sophisticated networking approaches

Network Slicing

The ability to virtualize the network

Small cell networking

Using small cells for more than just filling in coverage

Mobile Edge Computing

Pushing applications towards the edge

V2X

Enabling advanced automotive networking concepts

Massive MIMO / Beamforming

Advanced antenna technologies enabling 5G concepts

5G SPECTRUM

- New spectrum opportunities for 5G
 - Millimeter wave (mmW)
 - New sub-6 GHz opportunities

http://www.ericsson.com/en/networks/trending/hot-topics/5g-spectrum-strategies-to-maximize-all-bands

5G SPECTRUM (CONTINUED)

- New opportunities to share spectrum
- New unlicensed spectrum opportunities

Range	Band	Frequency Band	Bandwidth	Frequency Range
Low	71	600 MHz	81 MHz	617MHz - 698MHz
	44	700 MHz	100 MHz	703 MHz - 803 MHz
Mid	66	(AWS) 1700.2100 MHz	100 MHz	1710-1780 and 2110-2200 MHz
	40	2.3 GHz	100 MHz	2.3 – 2.4 GHz
	41	2.5 GHz BRS/EBS in US	194 MHz	2496 - 2690 MHz
	42	3.5 GHz	200 MHz	3400 - 3600 MHz
1	43	3.6 GHz	200 MHz	3600 - 3800 MHz
	C-band	4.4 GHz	590 MHz	4400 - 4499 MHz
High	n258	24 GHz mmWave	3.25 GHz	24.25 - 27.5 GHz
	n257	26 GHz mmWave	3.00 GHz	26.5 - 29.5 GHz
	n261	28 GHz mmWave	850 MHz	27.5 - 28.35 GHz
	n260	37 GHz mmWave	1 GHz	37.0 - 38.6 GHz
	n260	39 GHz mmWave	2 Ghz	38.0 – 40.0 GHz
	n257	47 GHz mmWave	1 GHz	47.2 - 48.2 GHz

5G Spectrum 1 GHz 6 GHz 100 GHz Mid-band Low-band High-band (e.g. mmWave) Spectrum Bands Licensed Low-band Below 1 GHz 600 MHz US Limited capacity with large 700 MHz EU area coverage and indoor penetration Mid-band AWS (Band 66) 3.5 GHz CBRS US 1 – 6 GHz 2.5 GHz 3.7-4.2 GHz US 5-5.9 GHz Good for urban deployment 3.3 - 4.3 GHz 5.9-7.1 GHz US. with increased capacity 4.4 - 4.99 GHz High-band 4.25 - 29.5 GHz Above 20 GHz 27.5-28.35 GHz 37-37.6 GHz Limited coverage with 64-71 GHz 37-38.6 GHz 57-71 GHz potential for very high 38.6-40 GHz Source: Wireless 20/20, December 2018

Source: 5G Americas, 3GPP 5GNR NSA specification and Wireless 20/20, December 2018

NETWORK SLICING

 "Providing dedicated virtual networks with **functionality** specific to the service or customers over a common network infrastructure"

"TSN Profile for Network Slicing," Huawei presentation, http://www.ieee802.org/1/files/public/docs2018/new-tsn-wangtt-TSN-profile-for-network-slicing-0718.pdf

 Small cell networking allows for densification of networks for improved performance and capacity

http://qualcomm.com/news/ong/2018/10/15/ubiquitous-5g-experiences-small-cells

M. Xu et al., "Bidirectional Fiber-Wireless Access Technology for 5G Mobile Spectral Aggregation and Cell Densification," IEEE Journal of Optical Communications and Networking, Vol. 8, Issue 12, 2016.

MOBILE EDGE COMPUTING

- Moving applications closer to the edge (i.e. users)
- Improves E2E latency performance

Y. Hu et al., "Mobile Edge Computing: A Key Technology towards 5G," ETSI White Paper, September 2015.

VEHICLE COMMUNICATIONS

- V2X technology being developed to provide
 - Improved throughput
 - Higher reliability
 - Lower latency
- Key enabler for autonomous vehicles

http://qualcomm.com/news/onq/2017/02/24/accelerating-c-v2x-toward-5g-autonomous-driving

- Massive MIMO enables much higher data rates and RF link performance
- Beamforming provides opportunity for improved interference minimization

http://www.inverse.com/article/53624-do-cell-phones-cause-cancer-maybe-maybe-not

http://www.ecnmag.com/article/2018/05/fact-or-fiction-whats-real-5g-new-radio

Applying 5G Technology to Tactical Networks

TACTICAL 5G – WHAT DOES THAT MEAN?

- Multiple ways to use 5G cellular
 - Use of existing commercial infrastructure
 - "Bring your own" private 5G networks
- Challenges and requirements will generally vary by echelon

- Requirements and spectrum opportunities may vary by phase of fighting
 - Training also important consideration

http://armyupress.army.mil/Journals/Military-Review/English-Edition-Archives/November-December-2017/The-Return-of-US-Army-Field-Manual-3-0-Operations/

SOME POTENTIAL TACTICAL 5G USE CASES

 The envisioned capabilities of 5G could potentially be applied to a number of current and future tactical military use cases

Massive Machine Type Communications

Ultra-Reliable and Low-Latency Communications

SOME HISTORICAL CHALLENGES OF TACTICAL CELLULAR

Security

- Electronic warfare
- Detection / Geolocation
- Over-the-air cyber attack
- CSfC challenges

Spectrum

- Access to commercial spectrum
- Not an over-abundance of tactical military spectrum available

Mobility

 Tactical mobility can prove challenging, especially at lower tactical echelons

Complexity

 At lower tactical echelons, technology must be push-button simple

Cell Site Installation

 Long timeframes associated with installations at permanent sites

5G FOR TACTICAL: CONCERNS, CHALLENGES. AND CONSIDERATIONS

Security

- Over-the-air security may benefit from 5G beamforming
- Cyber attack may be partially mitigated by 5G protection mechanisms
- New mmWave bands may improve over-the-air security
- Network slicing may provide security benefits
- Supply-chain considerations

Spectrum

- · Spectrum scarcity remains an issue
- Shared and unlicensed spectrum models may be attractive options

Mobility

- What if 5G infrastructure is on the move?
- How will beamforming work in tactical environments?
- How will interference management be affected by tactical mobility?

Complexity

- •5G is far more complex than predecessors
- How will it be made into a push-button black box?
- SON technologies may be key

Small Cell Networking

- Larger number of assets can 5G solutions be made affordable?
- Permanent installations remain difficult

RF

- How will 5G ranges compare to tactical doctrine?
- Importance of reliable backhaul communications

CONCLUSIONS

5G is an exciting technology with many possible tactical applications

 5G offers several attractive technology features that may help mitigate, at least partially, some historical challenges of employing cellular in tactical environments

- Several areas to track as 5G continues to mature
 - Shared and unlicensed spectrum usage opportunities
 - Ease-of-use / ease-of-administration of 5G solutions
 - 5G security
 - SON in 5G

