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Machine Learning (ML): State-of-the-Art

 Tremendous progress in recent years

« More and more data is available

« Significant increase in computational power

« "Standard” ML
[ \\ « Implemented in a centralized manner (e.g., in a data center/cloud)

e Full access to the data

« State-of-the art models (e.q., Deep Neural Networks) run in the cloud

« Managed and operated by standard software tools (e.g., TensorFlow, etc.)

» Accelerated by specialized hardware (e.g., Nvidia's GPUs, Google's TPUs)



Machine Learning at the Wireless Edge

* Centralized ML may not be suitable for many emerging applications, e.g.,
 Tactical networks
* First responder network
« Self-driving cars

«  What makes these applications/situations different?
« Data is born at the edge (phones and loT devices)
« Limited capacity uplinks
« Low latency & high reliability
« Data privacy / security
 Scalability & locality

*  Motivates moving learning closer to the network edge
« Jointly optimize learning and communication



Distributed ML Models

“Standard” ML
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ML in the cloud with dumb end-user devices
All data is in the cloud

Inference and decision making in the cloud
No data privacy

Federated ML

ML in the cloud + on-user-device ML
Only part of the data is in the cloud
Use the cloud but smartly
Privacy-preserving

Decentralized ML

No infrastructure (e.g., cloud) needed

Data is fully distributed

Collaborative intelligence

Privacy-preserving (sharing models instead of
data)
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Federated Learning: Basic Architecture
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 Key features
= On-device datasets: end users keep raw data locally
» On-device training: end-user devices perform training on a shared model

» Federated computation: an edge node (AP or BS) collects trained weights from

end users and updates the shared model (iterated till convergence)



Federated Learning: Issues to Address

« Communication to the edge node needs to go through wireless channels

 Learning at the edge ‘Qb
=
) 4

» The communication medium is shared and resource-constrained
= Only a limited number of end-user devices can be selected in each update round

= Transmissions are not reliable due to interference

e Questions

» How should the edge device schedule end-user devices to update trained
weights?

« How does the interference affect the training?



Federated Learning: Evolution in Time
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Devices check-in with the FL server, On-device training is performed,
model update is reported back

O Server rejected ones are told to come back later
. Server reads model checkpoint from Server aggregates updates into
Persistent storage . .
persistent storage the global model as they arrive
X RejeCtion (“come back Iater!") @ Model and conﬁguration are sent Server writes g|oba| model
to selected devices checkpoint into persistent storage

i&f Device or network failure



Federated Learning: System Model

« Mobile edge network

» APs and UEs capable of computing

= Fach AP has K associated UEs

 Spectrum configuration

= Spectrum is divided into NV subchannels, where N<K; and globally reused



Scheduling Mechanisms*

» Scheduling mechanisms

» Random Scheduling: AP uniformly selects

N out of K UEs at random

= Round Robin: AP groups UEs into G=K/N

groups, sequentially selecting each group

= Proportional Fair: AP selects NV out of K

UEs with the strongest SNRs:

m* = arg max le Rm”
- m§{1,2 ..... K} | Ry, R

N

* H. H. Yang, Z. Liu, T. Q S. Quek, and H. V. Poor, “Scheduling Policies for Federated Learning in Wireless
Networks", /EEE Trans. Commun., to appear.



Performance Metric

 Federated Learning in a mobile edge network

 The trained update can be successfully received by AP if and only if

= The UE is selected by the AP, and ./—/g >eeen CP/“’”ﬁg“Tra“O”, Reporting
. . . \ r A TrammgU —
= The received SINR exceeds a decoding threshold: ' | © f ] 7
S SR 1o it
T D eak Puthe|z]| T + 07 ‘ i l l l i l H b*
« Metric to quantify the effectiveness of training ? & ——y

»= The number of communication rounds required to reach an e-accurate solution



Convergence Rates of Federated Learning

Theorem 1: Under RS policy, for any given convergence target €, choosing the Trs such

that
log(e/n
Tgs 2 & /1)1 oV (28)
log (1 - 1+V(9.~))
we have the expected duality gap satisfies E[P(w(a'®s)) — D(a'®s)] < e. o= path ‘IC?SS exponent
B = precision level at UEs
Theorem 2: Under RR policy, for any given convergence target €, choosing the Trg such n = total # exempl ars
that
G1
s Glogle/n) o

1-8 ’
log (1 - 1+V(9,a)>

we have the expected duality gap satisfies E[P(w(a®r)) — D(aT®r)] < e,

Theorem 3: Under PF policy, for any given convergence target €, choosing the Tpr such
that

log(&/n)
log(1-(1-8) DI (1) k)

Tep > (33)

i 14+V(i6,c)

we have the expected duality gap satisfies E[P(w(al?r)) — D(aTtr)] < e.



 High SINR vs low SINR threshold

Normalized communication rounds
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Numerical Example
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= Each AP has 100 UEs and 20 subchannels
» PF works the best in high SINR condition
= RR works the best in low SINR condition
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—e—RS: 0 =-25dB
—a—RR: 6 =-25dB
—v—PF: 0 =-25dB
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Effect of Channel Bandwidth
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The total amount of spectrum is fixed

With more subchannels, more UEs can be
selected for update in each communication

round, and vice versa

Increasing the number of subchannels

decreases the bandwidth per subchannel

An optimal number of subchannels exist for

each of the three schemes



Loss

A Conclusion: Scheduling Protocol Matters

= SVM on MNIST data set
» 10,000 sample points distributed on 100 devices
= Select 20 out of 100 each global aggregation
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Can we optimize scheduling?




Design Metric: Age of Information

* Metric

« Age-of-Information (Aol) at a UE i

= During each communication round, if selected, the Aol drop to 0. Otherwise

the Aol increases by 1: Ti[t + 1] = (T;[t] + 1)(1 — S;[t]), Si[t] € {0,1}



Numerical Example

Constrained Minimization of Average Aol*

= SVM on MNIST data set
» 10,000 sample points distributed on 100 devices
» Available subchannels: 20
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* H. H. Yang, Y. Fu, A. Arafa, T. Q S. Quek, and H. V. Poor, "Age-Based Scheduling for Federated Learning in
Mobile Edge Networks"”, Proc. IEEE ICASSP 2020, to appear.
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A General Model for Distributed Learning

« m learning agents (e.g., smart sensors)

e ntraining examples 8= {(x;, )},

Learning Agents

Training Database XY, | | XYz | [ Xa¥s | | X Vs | | X5 Y5 | | | |XnVn |

e Special cases: centralized learning (m = 7) & decentralized

learning (m = n)



Collaboration

Learning Agents

o/ \/ o/ e Local learning requires only local
communication.

E=A

« However, it leads to local incoherence,
A | . . .
fr=argmin —— ¥ (F(x;) —y;)*+Mll 5 which is undesirable.

fg—'}'[K IN1| JEN,

Training Databasel x1,y.1 I | xz,yz | l X3¥3 | l x4..y4 I l X;’;’ys I |

2 1 2 2

Jm = arg min ;o jgn(f(xj) =32+ Ml £13
« Can agents collaborate to gain
coherence, while retaining the

efficiency of locality? Yes! *

* ). Predd, S. Kulkarni and H. V. Poor, “A Collaborative Training Algorithm for Distributed Learning,” /EEE Trans. Inf
Theory 55(4) 1856-71, 2009.



A Collaborative Algorithm

f1; = arg min Z (f(x;) —}’j)2+x1||f—f1,z—1||§4<
feHx je(12,6)

| X1:Y1 | | xz';’z | | x3,'y3 | | x4,;/4 | | x5;y5 | | xb:'y6 | | X7Y7 |
f1; = arg min Z (fF(x;) =¥)* +Nall f — far—1ll54

fEHy

Converges to a (coherent) relaxation of the global solution.




Experiment

Connectivity vs. Error rate
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Conclusions

« Mobile networks can be platforms for machine learning

. . . . X XX
« Federated learning: edge devices (access points) interact

with end-user devices to learn common models = e &

« Decentralized learning: end-user devices interact with one o

X

another to collaboratively learn models, or actions 2. . E




Thank You!




