

COMMERCIAL 5G RADIOS AS A BUILDING BLOCK FOR TACTICAL WIRELESS COMMUNICATIONS

Issy Kipnis, Sr. Principal Engineer, Intel Communication and Devices Group Leland Brown, Technology Development Manager, Intel Federal

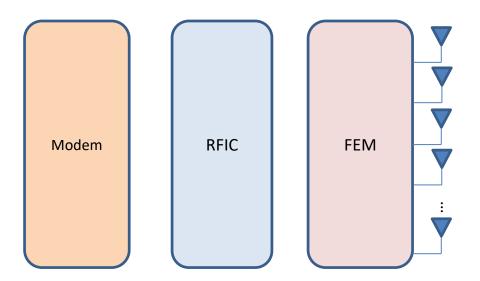
LEGAL DISCLAIMER

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [most relevant URL to your product].

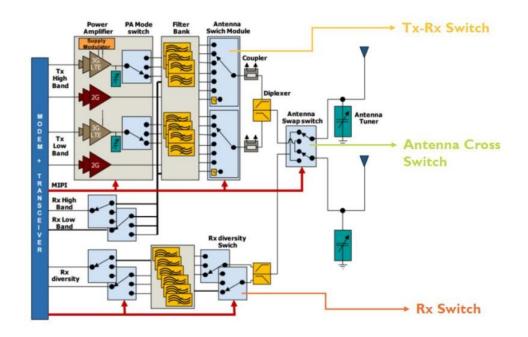
Intel, the Intel logo, and all Intel branded products are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

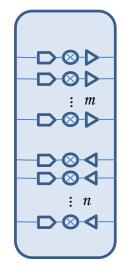
© Intel Corporation


ENHANCED MOBILE BROADBAND (EMBB) **VERTICALS ENABLED BY 5G** High peak throughput High spectral efficiency High capacity 3D HD Mobility Video Immersion Wearable Smart City Augmented Reality MASSIVE MACHIN Utility Metering Gaming COMMUNICATION eHealth ULTRA-RELIABLE LOW LATENCY Network and device Transportation Autonomous **COMMUNICATION (URLLC)** energy efficiency Asset Tracking Driving Massive number of Ultra-high reliability Sensor Network connections Smart Factory Ultra-low latency Very large coverage Smart Grid • Cost Savings | Power Savings

Sabine Roessel – 5G for Cellular IoT – April 27th, 2017 From: Dark As Dark Can, The Untold Keynote – May 2015, Sabine Roes


1. Modem

- Commercial or ASIC/FPGA proprietary
- 2. RFIC
 - Flexible, configurable
- 3. FEM (Front-end Module)
 - Application specific



- Complex and applications specific modules containing PA, LNA, filters and switches
- Constrained by protocol used and local regulations

- Flexible, configurable
- Protocol and waveform agnostic
- Massive MIMO
- Broadband, multiband
 - ~ 600MHz-6GHz
- Multi Gbps throughput
- Full-duplex operation possible utilizing Self-Interference Cancellation techniques

5G RFIC

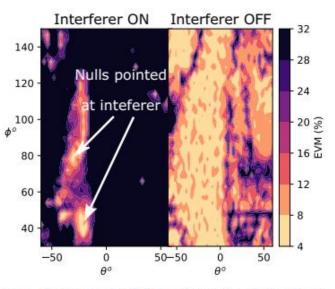
- Fully compliant 3GPP 5G NR
 - SA and NSA support
 - sub6GHz and mmWave band support
 - Scalable numerology (sub-carrier spacing, CP, slot length)
 - Modular slot/frame structure

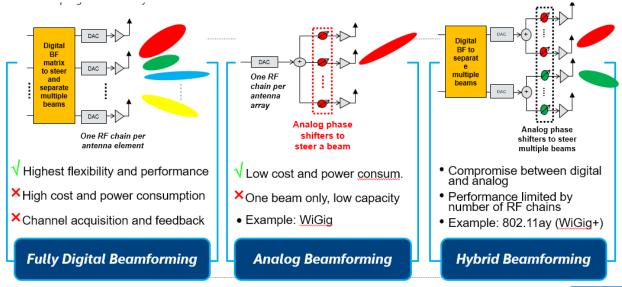
	LTE	New Radio	
Maximum Bandwidth (per CC)	20 MHz	50 MHz (@ 15 kHz), 100 MHz (@ 30 kHz), 200 MHz (@ 60 kHz), 400 MHz (@ 120 kHz)	
Maximum CCs	5 (currently)	16 (allowed BW and CCs combinations TBD)	
Subcarrier Spacing	15 kHz	2 ⁿ • 15 kHz TDM and FDM multiplexing	
Waveform	CP-OFDM for DL; SC-FDMA for UL	CP-OFDM for DL; CP-OFDM and DFT-s-OFDM for UL	
Maximum Number of Subcarriers	1200	3300	
Subframe Length	1 ms (moving to 0.5 ms)	1 ms	
Latency (Air Interface)	1 ms (moving to 0.5 ms)	1 ms	
Slot Length	7 symbols in 500 μs	14 symbols (duration depends on subcarrier spacing) 2, 4 and 7 symbols for mini-slots	
Channel Coding	Turbo Code (data); TBCC (control)	Polar Codes (control); LDPC (data)	
Initial Access	No beamforming	Beamforming	
мімо	8x8	8x8	
Reference Signals	UE Specific DMRS and Cell Specific RS	Front-loaded DMRS (UE-specific)	
Duplexing	FDD, Static TDD	FDD, Static TDD, Dynamic TDD	

BEAMFORMING FOR MMWAVE

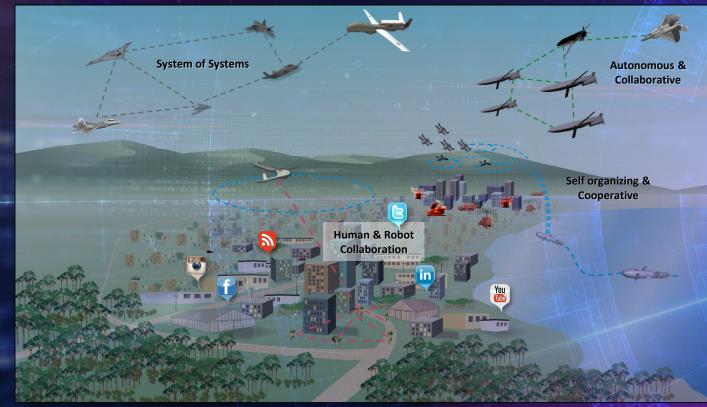
 Complex and fast beam management will be required for mmWave applications

Fig. 6. Setup of an example experiment using two SDPARs and an interferer




Fig. 7. Measurement result of the example SDPAR hardware experiment showing EVM vs RX SDPAR beam steering angle with and without an interferer.

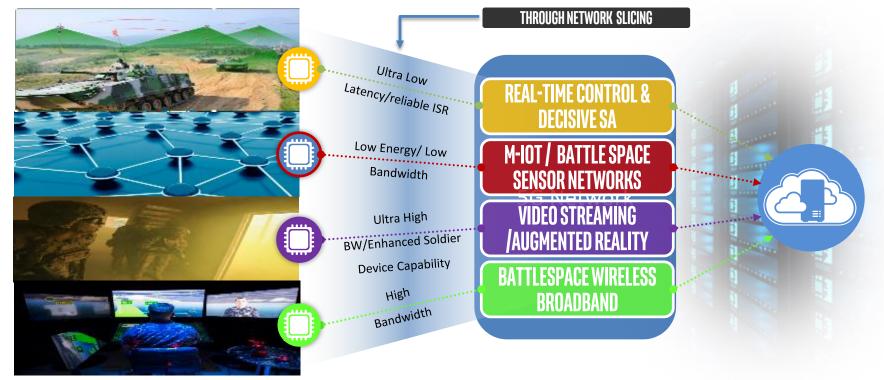
Source: B.Sadhu et all, "A Software-Defined Phased Array Radio with mmWave to Software Vertical Stack Integration for 5G Experimentation,' IEEE 2018 International Microwave Symposium



BEAMFORMING ARCHITECTURE

- Today most system use Analog/Hybrid beamforming
- Promising active research in low power digital beamforming

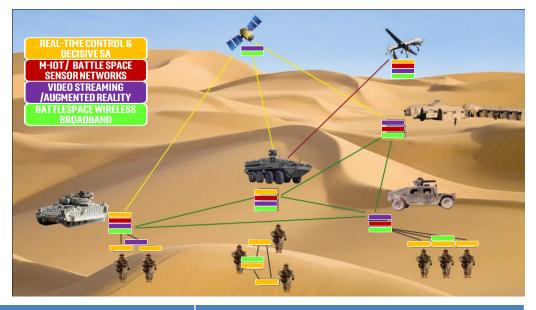
DEFENSE IS EVOLVING


DoD Evolution Area	Capabilities & Components	INTEL TECHNOLOGIES
Human & Robot Collaboration	AI ML Sensors IdAM Wireless Comms/ MEC Computer Vision	Nervana DLIA Embedded sensors SGX SDR ADC – DAC 5G Advanced Wireless Technology Movidius RealSense
Autonomous Systems: Self-organizing & Cooperative	AI ML, Machine Vision Edge Processing Security Beamforming/M2M Wireless Comms Computer Vision	Nervana DLIA NCS SDIS SGX SDR ADC – DAC 5G Advanced Wireless Technology Movidius RealSense
C4ISR: Systems of Systems	AI ML Edge Processing Advanced SW Integration Mesh Networking/mMTC Wireless Comms Computer Vision	Nervana DLIA BIOS level SW SDR ADC – DAC 5G Advanced Wireless Technology Movidius RealSense
AI Collaboration: Autonomous & Collaborative Intel Corporation Proprietary/Confidential	AI ML Edge Processing Advanced SW Integration Contested Spectrum/ SON Wireless Comms Computer Vision	Nervana DLIA BIOS level SW SDR ADC – DAC 5G Advanced Wireless Technology Movidius RealSense Mobileye

while the second second

FAILED MILITARY COMMS PROGRAMS WITH 5G TYPE COMMUNICATIONS REQUIREMENTS

5G TECHNOLOGY: TACTICAL NETWORKS CAPABILITY ASK


Intel Corporation Proprietary/Confidential

intel

TACTICAL RADIOS & TACTICAL NETWORKS CAPABILITY MAPPING

- Wireless Communication and Networks are critical aspects ٠ of the enabling technologies.
- Secure communication between generations of platforms, ٠ ground stations, NTM, as well as human and autonomous actors in a contested environment is a critical enabling technology of the kill web.
- Technologies that enable adaptive frequency allocation ٠ and spectrum management, flexible radio protocol selection, interference sensing or jamming avoidance all build on a software defined radio architecture(end to end with edge computing) are the building blocks that will provide a virtualized, secure and reliable communications for Blue Force actors.

MOSAIC BUILDING BLOCKS OF 5G	CAPABILITIES & COMPONENTS (15+ YEAR DOD ASK)	INTEL PRODUCTS & TECHNOLOGIES TO ANSWER "THE ASK"	
MILITARY COMMUNICATIONS & NETWORKING NEEDS	FREQUENCY AGILITY V2V/ V2(SOLDIER) COMMS Massive Mimo Self Healing Connectivity SDR Architecture	MEC, NFV FLEXRAN, FLEXCORE 5g Ran HW: 5g Small Cell DCC, 5g Protoyping, Network Slicing Programmable Sdr's (FPGA) RF Modems	
Intel Corporation Proprietary/Confidential	NETWORK SLICING	DATA CENTERS. CLOUD COMPUTE	

5G INFRASTRUCTURE BUILDING BLOCKS

NFV / SDN **EDGE & CORE** ACCESS **CAPABILITY ENABLERS** Cloud Ready Networks FlexCore Reference 5GNR RAT @ 28GHz, **VNFs** ٠ **Ciphering libraries** Software MANO 39Ghz and 3.5 GHz **CPRI over Ethernet FPGA** MFC Source Libraries NFVi MIMO Reference **Network Edge** Custom Si for Baseband • Transport Interworking Virtualization SDK for Linux Optimized and Radio IA software developers KVM Ingredients FlexRAN Reference Visual Cloud (VCD) Next Generation CO Software **Network Slicing** Libraries **Reference** Architecture vCCAP (Cable) Reference RSD . Software

SCALABILITY & FLEXIBILITY FOR NETWORKING WORKLOADS

Intel Confidential

AUTONOMOUS MILITARY VEHICLES

INTEL COMMERCIAL PRODUCT DEVELOPMENT

COMMERCIAL AUTONOMY

SMART BATTLE SPACE

MILITARY TACTICAL ANT<u>ennas</u>

Intel Corporation Proprietary/Confidential

ADAPTIVE & ROBUST

SMART & CONNECTED

VEHICLE AUTONOMY

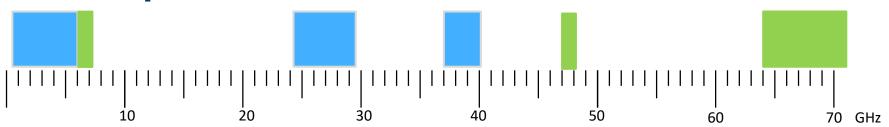
SMART CITES

ADVANCED 5G BEAMFORMING MIMO ANTENNAS

16

(intel)

CONCLUSIONS


- 5G communication systems will offer novel features that will enable new markets, Including Military and first Responder Markets
 - -URLLC, MMTC, LAA, network slicing, network function virtualization
- 5G radios/modems are very complex engines with high-investment development
- Opportunity to utilize commercial 5G radio components as building blocks for tactical wireless communications has finally arrived.

BACKUP

5G Spectrum Bands

FR1 450MHz-6GHz

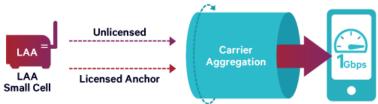
ntel

- "LTE band re-farming" [n1,n2,n3,n4,n5,n7,n8,n20,n28, n38,n41,n66...]
 - Re-farming of existing LTE spectrum to 5G Supplementary uplink bands also defined.
- "sub 6 GHz NR" [n77,n78,n79]
 - Wider bandwidth providing a trade-off for 5G applications that require both capacity and coverage
 - Expected in first wave of 5G deployments. Some overlap with LTE UHB bands (B42,43,48 etc)

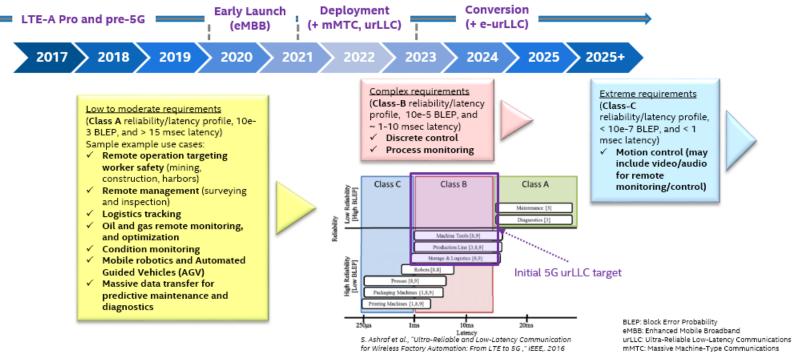
FR2 24.25-52.6GHz

- mmWave [n257, n258, n260]
 - Needed to accommodate very wide channel bandwidths for 5G applications requiring extremely high data rates
 - Requires mmWave antenna arrays

Unlicensed bands


- 5.9 7.1GHz
- 47.2 48.2GHz
- 64 71GHz

- 15GHz of new spectrum in mmWave band
- Need to combine licensed and unlicensed bands


LAA – LICENSED ASSISTED ACCESS

- Use of unlicensed spectrum in a cellular service to increase throughput
 - Anchor and high priority traffic on the licensed band
- Same Carrier Aggregation (CA) concept already in use in LTE/5G
 - In 3GPP since Release 13, with further improvements
- Fair coexistence in the unlicensed channel is provided by a regionspecific listen-before-talk (LBT) capability to ensure channels are clear before transmission

Latency/Reliability Profile Classifier

CHALLENGING THE TECHNOLOGY INTEL'S 5G PROJECTS AROUND THE WORLD 50+ TRIALS WORLDWIDE AT&T verizon ERICSSON 📕 SK telecom **Telia** NOKIA **Celstra** T · · Mobile ·

INTEL® 5G MOBILE TRIAL PLATFORM (MTP) COMPLETE 5G FUNCTIONALITY IN A SMALL FORM FACTOR

MTP-NR is Intel's 5G CPE prototype for pre-commercial field trial testing & research MTP-NR Features

- Ultra-high performance 5G architecture
- Up to 10Gbps throughput
- 2x processing capability vs. 2nd-Gen 5G MTP
- 28GHz and 39GHz bands
- 28GHz IF and RF for sub-6GHz
- Band support: 600-900Mhz, 3.3-4.2GHz, 4.4-4.9GHz, 5.1-5.9GHz

- 4x4 MIMO
- 16 antenna elements
- +11dBm power output
- 36 dBmi EIRP
- Based on state-of-the art Intel[®] Stratix[®] 10 FPGAs
- 3GPP NR early interoperability
- 200 MHz & 400MHz BW and up to 2Gbps Peak

Intel 5G Mobile Test Platform

uuuuu

(intel)

Gateway Router Wi-Fi (802.11ac), GPON 28 GHz Remote Radio Head Window Mount

> Remote Umbilical Power, Clock 28 GHz Tx/Rx Signal

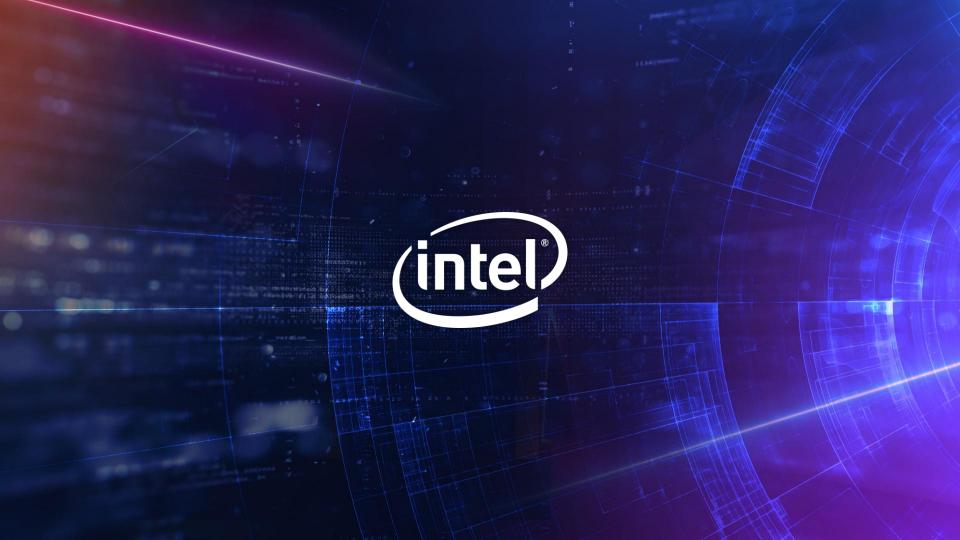
INTEL® AUTOMOTIVE TRIAL PLATFORM (ATP): TESTING 5G ON THE GO

Multiple Successful Trials w/ Global Leaders

- Multiple trials w/ NTT DoCoMo*, China Telecom*, BMW*, Ferrari*, and others
- Applications range from remote bulldozer operation to windsurfing to autonomous driving

Automotive Trial Platform (ATP) Details

- 28GHz mmWave
- Intel[®] Core[™] i7 Processor
- Powered by 5 Intel[®] Arria[®] 10 FPGAs
- ATP baseband is same as MTP 2nd gen


Technical Trial Results

- 5G at 28GHz mmWave operation using Intel 5G RFIC
- Integrated sub-6GHz and 28GHz RFFE operation w/ multi-panel antenna
- DL throughput of over 1Gbps; UL of 600 Mbps

