NOKIA Bell Labs

Ultra Reliable Low Latency Communication for 5G New Radio

IEEE Workshop on 5G Technologies for Tactical and First Responder Networks

Rapeepat Ratasuk, Principal Research Specialist Nokia Bell Labs October 23rd, 2018

URLLC is one of the three usage scenarios identified by ITU IMT-2020

NOKIA

© Nokia 2018

2

Use Cases Selected URLLC Use Cases

Factory Automation (local area)

Mobile

Robots/AGVs

paths)

Indoor & outdoor

Stringent availability,

latency, and jitter

• Ultra reliable mobility

(following pre-defined

Motion Control

- Indoor
- Most stringent availability, latency, and jitter
- Limited mobility

Harbor Automation

- Remote control of cranes and vehicles
- Indoor & outdoor
- Mixed data traffic types
- High reliability

Smart City Automation (wide area)

Smart Grid Protection and Control

- Outdoor
- Stringent requirements on availability, latency, and jitter

Autonomous Vehicles

Outdoor

- Stringent requirements on availability, latency
- Ultra reliable mobility
 (over wide area)

NOKIA

AGV: Automatic guided vehicle

URLLC Use Cases and Requirements (TS 22.261)

Table 7.2.2-1 Performance requirements for low-latency and high-reliability scenarios.

Scenario	End-to- end latency	Communication service availability	Reliability	User experienced data rate	Payload size	Traffic density	Connection density	Service area dimension
Discrete automation – motion control	1 ms	99,9999%	99,9999%	1 Mbps up to 10 Mbps	Small	1 Tbps/km ²	100 000/km ²	100 x 100 x 30 m
Discrete automation	10 ms	99,99%	99,99%	10 Mbps	Small to big	1 Tbps/km ²	100 000/km ²	1000 x 1000 x 30 m
Process automation – remote control	50 ms	99,9999%	99,9999%	1 Mbps up to 100 Mbps	Small to big	100 Gbps/km ²	1 000/km ²	300 x 300 x 50 m
Process automation – monitoring	50 ms	99,9%	99,9%	1 Mbps	Small	10 Gbps/km ²	10 000/km ²	300 x 300 x 50
Electricity distribution – medium voltage	25 ms	99,9%	99,9%	10 Mbps	Small to big	10 Gbps/km ²	1 000/km ²	100 km along power line
Electricity distribution – high voltage	5 ms	99,9999%	99,9999%	10 Mbps	Small	100 Gbps/km ²	1 000/km ²	200 km along power line
Intelligent transport systems – infrastructure backhaul	10 ms	99,9999%	99,9999%	10 Mbps	Small to big	10 Gbps/km ²	1 000/km ²	2 km along a road
Tactile interaction	0,5 ms	[99,999%]	[99,999%]	[Low]	[Small]	[Low]	[Low]	TBC
Remote control	[5 ms]	[99,999%]	[99,999%]	[From low to 10 Mbps]	[Small to big]	[Low]	[Low]	TBC

Various requirements from different URLLC services

URLLC Requirements from 3GPP RAN TR 38.913 (v14.3.0, August 2017)

Requirements	value
7.4 Control plane latency From a battery efficient state to start of continuous data transfer	10ms
7.5 User plane latency The time it takes to successfully deliver an application layer packet/message from the radio protocol layer 2/3 SDU ingress point to the radio protocol layer 2/3 SDU egress point via the radio interface in both uplink and downlink directions	0.5ms for both UL and DL
7.7 Mobility interruption time The shortest time duration supported by the system during which a user terminal cannot exchange user plane packets.	0ms
7.9 Reliability Reliability is defined as the success probability R of transmitting X bits within a certain delay at a certain channel quality (e.g. coverage-edge).	1-10 ⁻⁵ for 32 bytes with a user plane latency of 1ms

Flexible NR Framework

- NR provides flexible framework to support different services and QoS requirements
 - Scalable slot duration, mini-slot and slot aggregation
 - Self-contained slot structure
 - Traffic preemption for URLLC
 - Support for different numerologies for different services

- NR transmission is well-contained in time and frequency
 - Future features can be easily accommodated

NOKIA

© Nokia 2018

6

Ultra Reliable and Low Latency Communication It is not only about radio...

Timeline – URLLC Related Items

8 © 2018 Nokia

Physical Channels & Physical Signals

PDSCH DL shared channel

PBCH Broadcast channel

PDCCH DL control channel

DL Physical Signals

Demodulation Ref (DM-RS) Phase-tracking Ref (PT-RS) Ch State Inf Ref (CSI-RS) Primary Sync (PSS) Secondary Sync (SSS)

User Equipment

gNodeB

PUSCH UL shared channel

PUCCH UL control channel

PRACH Random access channel

UL Physical Signals

Demodulation Ref (DM-RS) Phase-tracking Ref (PT-RS) Sounding Ref (SRS)

NOKIA

•

Scalable NR Numerology

- NR supports scalable numerology to address different spectrum, bandwidth, deployment and services
- Sub-carrier spacing (SCS) of 15, 30, 60, 120 kHz is supported for ٠

Scalable NR Slot Duration

- One slot is comprised of 14 symbols
 - Slot length depends on SCS 1ms for 15 kHz SCS to 0.125ms for 120 kHz SCS
- Mini-slot (2, 4, or 7 symbols) can be allocated for shorter transmissions
- Slots can also be aggregated for longer transmissions
- A frame (10 ms) and sub-frame (1 ms) provide an SCS-agnostic time reference
 ¹¹
 © Nokia 2018

3GPP Rel-15 URLLC Toolbox

Low latency

- New numerology/slot/mini-slot/bidirectional structure
- Non-slot (i.e. mini-slot) based scheduling
- Downlink multiplexing between URLLC and eMBB services: pre-emptive scheduling
- Uplink grant free transmission
- Reduced processing time
- Short PUCCH (one or two symbols)

Reliability

- Blind repetitions (i.e. K-repetition) Micro-diversity (e.g. Rank-1 MIMO) Slot-aggregation for PDSCH and PUSCH Multi-slot PUCCH Configurable BLER targets for CQI report URLLC MCS/CQI table
- PDCP layer data duplication: allows a packet to be transmitted on two different carriers

Basic URLLC framework specified in 5G NR Rel-15

Mini-slot Scheduling (Non-slot based Scheduling)

Main use cases:

•

- Low latency when using small SCS (e.g. 15 kHz)
- Supporting **TDM within slot** when operating at high carrier frequencies and with RF beamforming

(a) K₀=0, one-symbol mini-slot

(b) K₀>0, two-symbol mini-slot

- Design principles for mini-slot:
 - Mini-slot is a shortened version of the slot
 - Common DMRS structures between slot and mini-slot
 - Common control channel structures
 - Flexible HARQ/scheduling timing with symbol level granularity
 - Supported mini-slot lengths
 - 2, 4, 7 OFDM symbols will have high priority
 - Other lengths can be considered later

Mini-slot plays a key role for latency reduction especially for smaller subcarrier spacing.

Example Latency Analysis with Mini-Slot Scheduling

UL Grant-free Transmission

- 5G network can configure dedicated SPS resource to one UE or a shared SPS resource allocation pattern to a group of user devices with similar characteristics
- In case of dedicated resource per URLLC UE, no collision and similar operation as in LTE.
- In case of shared SPS resource:
 - Multiple users share the same SPS resource allocation pattern and use **contention based access** with load control at base station

15 © Nokia 2018

UL Grant-free Transmission Types

- Two types of operation
 - Type 1: only based on RRC (re)configuration without any L1 signaling (released also by RRC).
 - Type 2: based on both RRC configuration and L1 signaling for activation/deactivation, LTE SPS-alike

UL grant-free transmission reducing overall latency by removing the scheduling process

DL Multiplexing: Pre-emptive Scheduling

Enhancements for latency and reliability in Radio and E2E

Rel.16 URLLC aims for higher reliability and better efficiency

Industrial IoT with 5G and NR

5G Time Sensitive Communications (TSC)

Support for Wireless Industrial Ethernet (IEEE TSN) and Multi-hop/Internet deterministic communications (aka IETF DetNet)

New R16 enablers on top of enhanced URLLC

- i. Common understanding of global time among devices and network
- ii. Network to support bounded latencies and error rates for packet transport (both min and max latency)
- iii. More detailed service descriptors for TSC flows (condition for deterministic forwarding in TSN/DetNet)

Key Rel.16 SI/WIs	Primary WG		
NR_IIoT (<u>RP-181479</u>)	RAN2		
FS_Vertical_LAN (<u>SP-180507</u>)	SA2		

[iii] Absolute E2E time synchronization to grand master clock (5GS internal or external) and sync capability for connected NEs via gPTP (both UE and UPF side)

19

Summary

- Diverse requirements expected from different URLLC use cases.
- 5G URLLC is one of the strong enablers of expansion to newly emerging vertical markets.
- Basic URLLC frame work has been specified in NR Rel-15. In the studied scenario, URLLC requirement of 10⁻⁵ within 1ms can be achieved.
- The coming Rel-16 will further enhance URLLC features especially e.g. supporting industrial wireless Ethernet.

