This file is a free sample of this chapter.

The full chapter is available exclusively to signed-in participants of the IEEE Future Networks Community.

<u>Click here to join the Future Networks</u> <u>initiative</u> (free for any IEEE Society member, and low-cost for non-members), then return to the <u>INGR page</u> to download full chapters.

IEEE INGR) International Network Generations Roadmap Would you like to join an INGR Working Group?

<u>Click here</u> for contact information for each group.

Interested in booking a private session with INGR experts for your company? Contact an IEEE Account

Manager to discuss an INGR Roadmap Virtual Private Event.

+1 800 701 4333 (USA/Canada) +1 732 981 0060 (worldwide)

onlinesupport@ieee.org

IEEE INGR) International Network Generations Roadmap 2022 Edition

Artificial Intelligence and Machine Learning

An IEEE 5G and Beyond Technology Roadmap futurenetworks.ieee.org/roadmap

Wi-Fi® and Wi-Fi Alliance® are registered trademarks of Wi-Fi Alliance.

The IEEE emblem is a trademark owned by the IEEE.

"IEEE", the IEEE logo, and other IEEE logos and titles (IEEE 802.11TM, IEEE P1785TM, IEEE P287TM, IEEE P1770TM, IEEE P149TM, IEEE 1720TM, etc.) are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated. All other products, company names, or other marks appearing on these sites are the trademarks of their respective owners. Nothing contained in these sites should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademark displayed on these sites without prior written permission of IEEE or other trademark owners.

Copyright © 2022

Table of Contents

1. Int	roduction	1
1.1.	Working Group Vision	1
1.2.	Scope of Working Group Effort	1
1.3.	Linkages and Stakeholders	2
1.4.	2022 Edition Update	3
2. To	day's Landscape	3
2.1.	Types of Learning	3
2.2.	Application of Learning to 5G and Future Networks	7
3. Fut	ture State	8
3.1.	AI/ML for Network Automation	9
3.2.	AI/ML for Network Slicing	11
3.3.	AI/ML for Network Digital Twins	12
3.4.	AI/ML for Security	12
3.5.	AI/ML for Dynamic Spectrum Access	13
3.6.	AI/ML for Cloud Computing	15
3.7.	AI/ML for Multi-access Edge Computing	16
3.8.	AI/ML for Optical Networks	17
3.9.	AI/ML for Systems Analytics	18
4. 1	Needs, Challenges, and Enablers and Potential Solutions	20
4.1.	Networking Slicing	20
4.1	.1. Needs, Challenges, and Potential Solutions	20
4.1	.2. Roadmap Timeline Chart	21
4.2.	Network Digital Twins	22
4.2	2.1. Needs, Challenges, and Potential Solutions	22
4.2	2.2. Roadmap Timeline Chart	24
4.3.	Security	24
4.3	3.1. Needs, Challenges, and Potential Solutions	24
4.3	3.2. Roadmap Timeline Chart	27
4.4.	Dynamic Spectrum Access	29
4.4	1.1. Needs, Challenges, and Potential Solutions	29
4.4	I.2. Roadmap Timeline Chart	31
4.5.	Cloud Computing	32
4.5	5.1. Needs, Challenges, and Potential Solutions	32
4.5	5.2. Roadmap Timeline Chart	33
4.6.	Multi-Access Edge Computing	35
4.6	5.1. Needs, Challenges, and Potential Solutions	35

4.6.2. Roadmap Timeline Chart	36		
4.7. Intelligent Optical Networks	37		
4.7.1. Needs, Challenges, and Potential Solutions	37		
4.7.2. Roadmap Timeline Chart	39		
5. AI/ML Standards Development	39		
5.1. In Progress: IEEE P1900.8 Standard on Machine Learning for RF Spectrum Awareness in DSA and Sharing Systems 39			
6. Conclusion	41		
6.1. Summary of Conclusions	41		
6.2. Working Group Recommendations	42		
7. Contributor Bios	43		
3. References	47		
8. Acronyms/abbreviations	50		
9. Appendix	53		
9.1. Appendix A – Supplemental Information on AI/ML Workflow	53		
9.1.1. Data Handling	53		
Data Acquisition	53		
Data Labeling	54		
Using Existing Data and Models	54		
AI/ML Stack	55		
Infrastructure Component	55		
Development Component	56		
Migration Based on IaaS	57		
Migration Based on Managed IaaS	57		
Migration Based on Cognition-aaS	58		
9.2. Appendix B – Supplemental Information on AI/ML for Security	59		

List of Tables

Table 1: Network Slicing Needs, Challenges, and Enablers and Potential Solutions	21
Table 2: Network Digital Twins Needs, Challenges, and Enablers and Potential Solutions	24
Table 3: Summary of Future 5G AI/ML Security Research Areas	26
Table 4: Summary of Future 5G AI/ML Security Research Areas	27
Table 5: Dynamic Spectrum Access Needs, Challenges, and Enablers and Potential Solutions	31
Table 6: Cloud Computing Needs, Challenges, and Enablers and Potential Solutions	33
Table 7: MEC Needs, Challenges, and Enablers and Potential Solutions	36

Table 8: Working Group Needs, Challenges, Enablers and Potential Solutions	39
Table 9: Data Acquisition Techniques	53
Table 10: Data Labeling Categories	54
Table 11: A Classification of Techniques for Improving Existing Data and Models	55

List of Figures

Figure 1: Artificial Intelligence and Its Relationship to Machine Learning and Deep Learning	4
Figure 2: Classification, Regression, Clustering and Anomaly Detection	5
Figure 3: Machine Learning with Neural Networks	5
Figure 4: A Multi-Class Deep Neural Network	6
Figure 5: Reinforcement Learning Paradigm	7
Figure 6: 5G Requirements and Market Verticals	8
Figure 7: 5G AI/ML E2E Operations	9
Figure 8: Machine Reasoning and Machine Learning to realize vision of Intent Based Networks	9
Figure 9: Network Resource Adaptation with Reinforcement Learning	10
Figure 10: ETSI 5G System architecture [18]	11
Figure 11: 5G Security Cloud	13
Figure 12: Architecture of a Dynamic Spectrum Access (DSA) Radio Node with Cognitive Processing [Ref-1900.1].	14
Figure 13: Cloud delivery models [16]	15
Figure 14: The reference architecture of AI-driven autonomous optical networks [18]	18
Figure 15: An example of optical network DT with aid of ML-based monitoring techniques	23
Figure 16: 5G Security Pillars	25
Figure 17: Application of Control Loop algorithm for Predictive Security [26]	26
Figure 18: Key Functions of an Intelligent DSA Radio Mapped to Network Infrastructure Components	30
Figure 19: Intelligent Load Balancing	35
Figure 20: Fault Discovery and Recovery	35
Figure 21: Continuum of Spectrum Awareness use cases based on RF Machine Learning model inferencing and prediction capabilities	40
Figure 22: AI/ML Stack	56
Figure 23: AI/ML Execution in Cloud-based on IaaS	57
Figure 24: AI/ML Execution in Cloud-based on Managed IaaS	58
Figure 25: AI/ML Execution in Cloud-based on Cognition-aaS	58

ABSTRACT

In the evolution of artificial Intelligence (AI) and machine learning (ML), reasoning, knowledge representation, planning, learning, natural language processing, perception, and the ability to move and manipulate objects have been widely used. These features enable the creation of intelligent mechanisms for decision support to overcome the limits of human knowledge processing. In addition, ML algorithms enable applications to draw conclusions and make predictions based on existing data without human supervision, leading to quick, near-optimal solutions even in problems with high dimensionality. Hence, autonomy is a key aspect of current and future AI/ML algorithms.

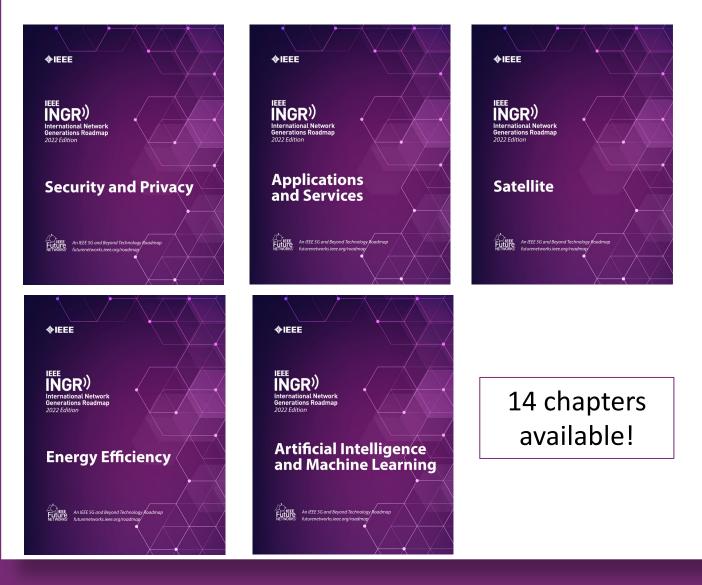
This chapter focuses on the development and implementation of AI/ML technologies for 5G and future networks. The objective is to illustrate how these technologies can be smoothly migrated into 5G systems to increase their performance and to decrease their cost. To that end, this chapter presents the Drivers, Needs, Challenges, Enablers, and Potential Solutions identified for the AI/ML field as applicable to future networks over three-, five-, and ten-year horizons.

AI/ML applications for 5G are wide and diverse. In this document, some of the key areas are described which includes networking, securing, cloud computing and others. Over time, this white paper will evolve to encompass even more areas where AI/ML technologies can improve future network performance objectives.

Key words:

AI, ML, DL, CNN, DNN, RNN, GAN, GPU, Cloud Computing, MEC

CONTRIBUTORS


Dr. Deepak Kataria	IP Junction, USA
Dr. Anwar Walid	Nokia Bell Labs, USA
Dr. Mahmoud Daneshmand	Stevens Institute of Technology, USA
Dr. Ashutosh Dutta	Johns Hopkins University Applied Physics Lab, USA
Dr. Michael A. Enright	Quantum Dimension, Inc., USA
Dr. Rentao Gu	BUPT, China
Alex Lackpour	Drexel University, USA
Prakash Ramachandran	Dell Technologies, USA / eOTF, India
Dr. Honggang Wang	UMass Dartmouth, USA
Dr. Chi-Ming Chen	AT&T (Retired), USA
Baw Chng	BAWMAN LLC, USA
Dr. Frederica Darema	InfoSymbiotic Systems Society, USA
Acknowledgement	
Brad Kloza	IEEE Future Networks Initiative
Matthew Borst	IEEE Future Networks Initiative
	1

Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

Step 1. <u>Click here to join the Future Networks initiative</u> (free for any IEEE Society member, and low-cost for non-members)

Step 2. Return to the <u>INGR page</u> to download full chapters.

