This file is a free sample of this chapter.

The full chapter is available exclusively to signed-in participants of the IEEE Future Networks Community.

Click here to join the Future Networks initiative (free for any IEEE Society member, and low-cost for non-members), then return to the INGR page to download full chapters.

Would you like to join an INGR Working Group?

Click here for contact information for each group.

Interested in booking a private session with INGR experts for your company? Contact an IEEE Account Manager to discuss an INGR Roadmap Virtual Private Event.

+1 800 701 4333 (USA/Canada)
+1 732 981 0060 (worldwide)

onlinesupport@ieee.org
Table of Contents

1. *Executive Summary* ... 1

2. *Introduction* .. 2

 2.1. Edge Services Roadmap .. 2

 2.2. 2022 Edition additional Terminologies ... 2

3. *Working Group Vision* ... 3

 3.1. Scope of Working Group Effort .. 3

 3.2. Linkages and Stakeholders .. 4

4. *Today’s Landscape* ... 4

 4.1. Current State of Technology and Research .. 4

 4.1.1. IIoT (Industry 4.0) ... 4

 4.1.2. V2X – Edge Services for smart Transportation .. 5

 4.1.3. TeleXApps Current State ... 7

 4.1.4. Content Delivery Current State ... 8

 4.2. Drivers and Technology Targets .. 9

 4.2.1. IIoT Drivers & Technology Targets ... 9

 4.2.2. V2X - Transportation Edge Service Drivers and Technology Targets 9

5. *Future State (2032)* .. 11

 5.1. Vision of Future Technology ... 11

 5.1.1. MEC & the Green MEC (Energy Efficient) ... 11

 5.1.2. Serverless Edge Functions & Emergence of Vertical Domains .. 12

 5.1.3. Consumer Electronics and Device Edge .. 13

 5.2. Mobile Edge Architectural Framework ... 13

 5.2.1. Future of Compute & Storage Offload .. 15

 5.2.1.1. Compute offloading from device to edge .. 15

 5.2.1.2. Compute offloading from Edge to Cloud ... 15

 5.2.1.3. Storage offloading from edge for Big Data Analytics .. 16

 5.2.2. Edge as a Service .. 16

 5.2.2.1. Use-cases and implementation tools: .. 17

 5.2.3. Edge Computing based on virtualization & VMs: ... 19

 5.2.4. Service Mesh (CNCF) - Cloud-Native L2/L3 Service Mesh ... 19

 5.2.4.1. Open Policy Agent & Congress ... 20

 5.2.5. Training & Deployments of Inference Models at the edge ... 20

 6.1. Requirements to Enable Edge Cloud Platform .. 24

 6.2. Top level needs, Challenges, and Solutions .. 25

 6.2.1. Need #1 Platform Standardization ... 26

 6.2.2. Need #2 Application Standardization at the Edge ... 27

 6.2.3. Need #3 User Expectations from Service and Operations .. 27

 6.2.4. Need #4 Security at the Edge ... 27

 6.2.5. Need #5 Support for Heterogeneous hardware ... 28

 6.2.6. Need #6 Hybrid Cloud – ‘Edge Service’ ... 28

 6.2.7. Need #7 Intelligent Client Devices .. 29

 6.3.1. One size does not fit all .. 29
List of Tables

Table 1. 6G requirements and Edge Native Services (Source 6G/INGR WG presentations) 2
Table 2. System requirements per Scenario (Courtesy AECC.ORG) 10
Table 3. Overall Needs of Edge Platform & Service Automation 24
Table 4. Top needs of 10-year vision, challenges and some possible solutions. 25
Table 5. Edge Computing Global Spending Report 40
Table 6. Edge Computing Spending Share by Geography (IDC 2019-29024) 41
Table 7. Edge Computing Spending Share by Professional Service & Technology (IDC 2019-29024). 41
Table 8. API Libraries 43
Table 9. Security Challenges and Possible Approaches 44

List of Figures

Figure 1. A generic Driver Support feature for level 1-3 SAE standards for Autonomous Vehicles. (Courtesy Spirent Communications) 6
Figure 2. SD-RAN using xApps with micro SDN Controller for near RT as well Non-RT Slicing (Courtesy Radisys Corp. at ONF) 7
Figure 3. Cloud Native Architecture for running XApp over DU & CU (Courtesy Radisys Corp. at ONF) 8
Figure 4. Reference architecture of Distributed Edge and Cloud continuum with Vehicle to Edge to Cloud and Vice versa 10
Figure 5. The LightEdge Architecture in a 5G SA deployment. 14
Figure 6. End-to-end 5G SA Architecture with LightEdge(Edge) 15
Figure 7. Thematic diagram for edge processing as Service [5] 17
Figure 8. URLLC/e-URLLC dependent Edge use cases [5] 18
Figure 9. Edge dependent radio access interface vision [5] 18
Figure 10. Open Policy Agent based Distributed Policy deployments for the Edge Services 20
Figure 11. Training & Deployments of Inference Models at the edge 21
Figure 12. Edge Data Collection with OpenTelemetry for Infrastructure & Applications 23
ABSTRACT

The Key drivers have certainly changed, and the 5G-hype has reached the cycle of disillusionment globally in 2021-2022. Communication Service Providers have started re-focusing on few use cases that can leverage the markets for better average revenue per unit (ARPU) for both consumers & Enterprises. The list is short includes

1. Service based use cases based on Service constraints (low latency, high throughput, low jitter)
 a. IIOT (Industry 4.0)
 b. V2X (Autonomous Vehicle/ Intelligent Transportation/Traveling Edge)
 c. Telehealth / Telemedicine / Remote diagnostics
 d. Content delivery (with Caching, Realtime, Reach Media Internet Applications)
 e. Ad hoc, Temporary or as needed basis Specific mission Edge services (Emergency, ad hoc major events, DoD combat mission, and more)

2. Radio Based Multi-Access Edge (MEC) with different flavors
 a. Real Time / Near Real Time enabled Radio Control, Management and XApps based on O-RAN
 b. Constrained based Edge Infrastructure to optimize Power, Form Factor and Updates to NFV-SDN with OneM2M from ETSI to cover IoT Applications
 c. The focus on Data Privacy, Security, Data Localization & Analytics Big or Small
 d. Smart Edge with Containers and Compute & Network acceleration are emerging from Infrastructure and Semiconductor players.

We name item 1 in above as Edge Service Platform Framework (ESPF-2021) supplementary updates and item 2 in above as Edge Automation Platform Framework (EAPF-2021) updates for INGR.2021 efforts released here in 2022.

Key words: ESPF, ENS, IIOT, V2X, XApps, EAPF, O-RAN, MEC, OneM2M, IoT, 5G
CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohamad Patwary</td>
<td>Birmingham City School of Computing</td>
</tr>
<tr>
<td>Prakash Ramchandran</td>
<td>Dell Technologies /OpenTechForum (Co-Chair)</td>
</tr>
<tr>
<td>Sujata Tibrewala</td>
<td>Intel (Co-Chair)</td>
</tr>
<tr>
<td>TK Lala</td>
<td>ZcureZ (Co-Chair)</td>
</tr>
<tr>
<td>Frederick Kautz</td>
<td>Doc.ai, CNCF-TUG</td>
</tr>
<tr>
<td>Estefanía Coronado</td>
<td>i2CAT</td>
</tr>
<tr>
<td>Roberto Riggio</td>
<td>i2CAT</td>
</tr>
<tr>
<td>Someswar Ganugapati</td>
<td>AT&T</td>
</tr>
<tr>
<td>Sunku Ranganathan</td>
<td>Intel</td>
</tr>
<tr>
<td>Liangkai Liu</td>
<td>Wayne State University</td>
</tr>
</tbody>
</table>
Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

Step 1. Click here to join the Future Networks initiative (free for any IEEE Society member, and low-cost for non-members)

Step 2. Return to the INGR page to download full chapters.

14 chapters available!