This file is a free sample of this chapter.

The full chapter is available exclusively to signed-in participants of the IEEE Future Networks Community.

[Image of IEEE Future Networks logo]

Click here to join the Future Networks initiative (free for any IEEE Society member, and low-cost for non-members), then return to the INGR page to download full chapters.

Would you like to join an INGR Working Group? Click here for contact information for each group.

Interested in booking a private session with INGR experts for your company? Contact an IEEE Account Manager to discuss an INGR Roadmap Virtual Private Event.

+1 800 701 4333 (USA/Canada)
+1 732 981 0060 (worldwide)

onlinesupport@ieee.org
# Table of Contents

1. **Introduction** ........................................................................................................... 1

2. **Working Group Vision** ........................................................................................... 1
   2.1. Scope of Working Group Effort ........................................................................... 2
   2.2. Linkages and Stakeholders ................................................................................ 4
       2.2.1. Stakeholders ................................................................................................. 4
       2.2.2. Key Supporting Ecosystems ......................................................................... 4
       2.2.3. Linkages to INGR Content .......................................................................... 5

3. **Today’s Landscape** ................................................................................................ 5
   3.1. Current State of Technology and Research ....................................................... 5
   3.2. Drivers and Technology Targets ......................................................................... 6

4. **Future State (2032)** ............................................................................................... 7

5. **Needs, Challenges, and Enablers and Potential Solutions** .................................. 8
   5.1. Summary .............................................................................................................. 8
   5.2. Optical Xhaul Networks ...................................................................................... 8
       5.2.1. Current State .................................................................................................. 8
       5.2.2. Challenges ................................................................................................... 9
       5.2.2.1. Packet, Synchronization, PON and Wireless technologies in Xhaul ....... 11
       5.2.2.2. Potential Solutions .................................................................................... 11
           5.2.2.2.1. Digital Optical Xhaul Transceivers ...................................................... 12
           5.2.2.2.2. Class C and D routers with improved boundary clocks .................... 12
   5.3. High Speed Optical Access Networks .................................................................. 13
       5.3.1. Challenges .................................................................................................... 13
       5.3.2. Potential Solutions ....................................................................................... 14
           5.3.2.1. Cooperative dynamic bandwidth allocation .......................................... 15
           5.3.2.2. Virtualization and slicing ...................................................................... 15
           5.3.2.3. Advanced modulation format ................................................................ 15
   5.4. Co-Packaged Optics and Data Center Networks ................................................ 16
       5.4.1. Challenges .................................................................................................... 16
       5.4.2. Co-Packaged Optics .................................................................................... 17
       5.4.3. Potential Solutions ....................................................................................... 18
           5.4.3.1. Optical Switching ................................................................................ 19
           5.4.3.2. Data Center Disaggregation .................................................................. 19
           5.4.3.3. Data Center Interconnect ...................................................................... 20
           5.4.3.4. Space Division Multiplexing ................................................................. 20
           5.4.3.5. Co-Packaged Optics ............................................................................ 20
   5.5. Machine Learning in Optical Networks .................................................................. 21
       5.5.1. Challenges .................................................................................................... 21
       5.5.2. Potential Solutions ....................................................................................... 24
   5.6. In-Building Optical Networks ................................................................................ 24
       5.6.1. Challenges .................................................................................................... 24
       5.6.2. Potential Solutions ....................................................................................... 27
   5.7. Optical Wireless Technologies for Space Communications Using Satellites or High-Flying Platforms .................................................................................................................. 27
       5.7.1. Challenges .................................................................................................... 27
Table 20. Challenges for Quantum Communications
Table 21. Potential Solutions for Quantum Communications

Figures

Figure 1. Vision of future optical communication networks. 2
Figure 2. Different types of optical networks. 3
Figure 3. Today’s optical networking landscape. 6
Figure 4. Xhaul Network; processing functions shown in grey boxes below the corresponding node types at which they are executed; dot-dashed lines indicate split locations. 9
Figure 5. PON technologies evolution and standard trends. 13
Figure 6. Future optical access network. 14
Figure 7. Hierarchical DC network architecture. 16
Figure 8. Illustration of integrated photonics transceiver chiplets co-packaged with an ASIC switch in a multi-chip module. Source: Peter O’Brien, Tyndall Institute and European PIXAPP pilot line (2021). 18
Figure 9. DC network architecture with merged core/aggregation tier based on optical switching. 19
Figure 10. Network automation in a KDN-based optical network. 22
Figure 11. Envisioned in-building network architecture for 6G era. 26
ABSTRACT

Optical networks have long played a central role in telecommunication networks, forming the fiber backbone of the Internet. Over time fiber optic systems have evolved and found deployment increasingly closer to the network edge. Today, optical systems extend to the server network interface cards and home access networks. New application areas have emerged such as the use of free space communications using LiFi technologies, space communication networks between satellites and ground stations. Looking ahead, optical systems in many areas will continue to be driven by the need for higher speeds and capacity in order to keep up with traffic demands. In addition to faster interfaces speeds, parallel fiber or spatial division multiplexing will be used for future capacity growth. In several application areas, new functionality is expected such as low latency in Xhaul networks and optical switching and co-packaged optics in data centers. LiFi will become critical for mitigating RF interference for in-building networks. Intense research is underway to develop quantum networks to connect quantum computers. This general trend toward new functionalities for optical systems, moving beyond capacity growth in fiber networks, is driven in large part by the increasing performance and demands of today’s user equipment and applications. From the network edge to the data centers, components are reliant on optics. The integration of optics into these new applications and the higher levels of functionality demanded of optics motivate the use of roadmaps to guide research and development and overcome future roadblocks.

Key words:
Optical networks, Xhaul, LiFi, space communications, wavelength division multiplexing, spatial division multiplexing, quantum networks, data center interconnect, data center networks, co-packaged optics.
CONTRIBUTORS

Dan Kilper (Co-Chair) | CONNECT, Trinity College Dublin, Ireland
Thas A Nirmalathas (Co-Chair) | The University of Melbourne, Australia
Tom Hausken | OSA
Reza Vaez-Ghaemi | Viavis Solutions
HwanSeok Chung | ETRI, S Korea
Prakash Ramchandran | Cloud24x7
Volker Jungnickel | HHI Germany
Murat Yuksel | University of Central Florida, USA
Surgey Ten | Corning, USA
Rudra Dutta | North Carolina State University, USA
Paolo Monti | Chalmers University of Technology, Sweden
Lena Wosinska | Chalmers University of Technology, Sweden
Peter Andrekson | Chalmers University of Technology, Sweden
Suresh Subramaniam | George Washington University, USA
Ahsutosh Dutta | Applied Physics Laboratory, John Hopkins University, USA
KRS Murthy | i3 World, USA
Zuqing Zhu | University of Science and Technology of China, China
Brad Kloza | IEEE Future Networks Initiative
Matthew Borst | IEEE Future Networks Initiative

Other Working Group Members
Haydar Çukurtepe (TED University, Turkey)
Rentao Gu (Beijing University of Post and Telecommunications, China)
Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

**Step 1.** [Click here to join the Future Networks initiative](#) (free for any IEEE Society member, and low-cost for non-members)

**Step 2.** Return to the [INGER page](#) to download full chapters.

14 chapters available!