This file is a free sample of this chapter.

The full chapter is available exclusively to signed-in participants of the IEEE Future Networks Community.

Click here to join the Future Networks initiative (free for any IEEE Society member, and low-cost for non-members), then return to the INGR page to download full chapters.

Would you like to join an INGR Working Group?

Click here for contact information for each group.

Interested in booking a private session with INGR experts for your company? Contact an IEEE Account Manager to discuss an INGR Roadmap Virtual Private Event.

+1 800 701 4333 (USA/Canada)
+1 732 981 0060 (worldwide)
onlinesupport@ieee.org
Satellite
Wi-Fi® and Wi-Fi Alliance® are registered trademarks of Wi-Fi Alliance.

The IEEE emblem is a trademark owned by the IEEE.

"IEEE", the IEEE logo, and other IEEE logos and titles (IEEE 802.11™, IEEE P1785™, IEEE P287™, IEEE P1770™, IEEE P149™, IEEE 1720™, etc.) are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated. All other products, company names or other marks appearing on these sites are the trademarks of their respective owners. Nothing contained in these sites should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademark displayed on these sites without prior written permission of IEEE or other trademark owners.

Copyright © 2022
Table of Contents

1. **Introduction** .. 1

 1.1. 2022 Edition Update .. 1

2. **Working Group Vision** .. 2

 2.1. Scope of Working Group Effort .. 5

 2.2. Linkages and Stakeholders .. 6

3. **Today’s Landscape** ... 7

 3.1. Current State of Technology and Research ... 7

 3.2. Drivers and Technology Targets ... 8

 3.3. Satellite 5G Deployment Challenges/Bottlenecks/Barriers from the Market Standpoint 9

4. **Future State (2032)** ... 11

 4.1. Vision of Future Technology ... 11

 4.2. Architectural Framework, Use Cases, and Reference Architecture 12

 4.2.1. Non-Terrestrial Elements Considered .. 13

 4.2.2. Use Cases for Satellite Networks as Backhaul for 6G Terrestrial Networks 14

 4.2.2.1. Use Case-1: DU to CU Bent Pipe/1-hop relay over a LEO satellite 15

 4.2.2.2. Use Case-2: DU to CU over Multi-hop LEO non-federated Network 15

 4.2.2.3. Use Case-3: DU to CU over Multi-hop Federated Network 16

 4.2.2.4. Use Case-4: bent pipe/1-hop relay to DU to Gateway 17

 4.2.2.5. Use Case-5: DU to Gateway backhaul over multi-hop LEO non-federated network 17

 4.2.2.6. Use Case-6: DU to Gateway backhaul over multi-hop federated LEO network 18

 4.2.2.7. Use Case-7: Terrestrial SBS to LEO bent-pipe/1-hop relay To eNodeB/eNodeG 19

 4.2.2.8. Use Case-8: Terrestrial SBS to eNodeB/eNodeG over LEO multi-hop non-federated network 19

 4.2.2.9. Use Case-9: Terrestrial SBS to eNodeB/eNodeG over LEO multi-hop federated LEO 20

 4.2.2.10. Use case-10: UAVs as bentpipe/single-hop relay ... 21

 4.2.2.11. Use case-11: UAV multi-hop backhaul .. 21

 4.2.2.12. Use case-12a-b: UAV-LEO Integrated multi-hop backhaul 22

 4.2.1. Use Cases with Direct Access Satellite Networks .. 24

 4.2.1.1. Direct Access Use Case-1.a: UE to LAP → gNodeB ... 25

 4.2.1.2. Direct Access Use Case-1.b: UE to LAP → LAP → gNodeB 26

 4.2.1.3. Direct Access Use Case-1.c: UE to LAP → HAP → gNodeB (non-federated and federated cases) 27

 4.2.1.4. Direct Access Use Case-1.d: UE to LAP → LEO → gNodeB 27

 4.2.1.5. Direct Access Use Case-1.e: UE to LAP → MEO → gNodeB 28

 4.2.1.6. Direct Access Use Case-1.f: UE to LAP → LEO → MEO → gNodeB (non-federated and federated cases) 29

 4.2.1.7. Direct Access Use Case-1.g: UE to LAP → LEO → MEO → GEO → gNodeB (non-federated and federated cases) 30

 4.2.1.8. Direct Access Use Case-1.h: UE to LAP → LEO → MEO → HEO → gNodeB (non-federated and federated cases) 31

 4.2.1.9. Direct Access Use Case-2.a: UE to HAP → gNodeB ... 31

 4.2.1.10. Direct Access Use Case-2.b: UE to HAP → HAP → gNodeB 32

 4.2.1.11. Direct Access Use Case-2.c: UE to HAP → LEO → gNodeB 33

 4.2.1.12. Direct Access Use Case-2.d: UE to HAP → LEO → MEO → gNodeB (non-federated and federated cases) 33

 4.2.1.13. Direct Access Use Case-2.e: UE to HAP → MEO → gNodeB 34

 4.2.1.14. Direct Access Use Case-2.f: UE to HAP → LEO → MEO → GEO → gNodeB (non-federated and federated cases) 35
5. Needs, Challenges, and Enablers and Potential Solutions

5.1. Summary

5.2. Applications and Scenarios

5.3. Architecture

5.4. mmWave through Satellite Networks

5.4.1. Introduction
Table 4. Key Performance Indicators (Reference: N. Rajatheva et.al, White Paper on Broadband Connectivity in 6G) 12
Table 5. Challenges Architectural Framework 13
Table 6. NTN Elements and Altitude Range 13
Table 7. Satellite-IoT Physical layer Reference Scenarios 43
Table 8. Reference Parameters for Satellite-IoT Physical Layer Scenarios 43
Table 9. Application/Use-Case for Satellite IoT 44
Table 10. Interface Equivalence between this Satellite Roadmap and 3GPP 38.821 Rel. 16 for 5G-Satellite Integration 47
Table 11. Challenges Associated with "Applications and Scenarios" 53
Table 12. Solutions Associated with "Applications and Scenarios" 54
Table 13. Overall Needs 54
Table 14. Challenges Associated with "Architecture for 5G-satellite integration" 54
Table 15. Potential Solutions to Address "Architecture for 5G-satellite integration" 55
Table 16. Challenges Associated with "Satellite-IoT" 56
Table 17. Potential Solutions to Address "Satellite-IoT" 56
Table 18. Uplink, Downlink and Available Spectrum for the mmWave through Satellite according to ITU-R regulations 58
Table 19. Challenges Associated with "Capacity" 63
Table 20. Potential Solutions to Address "Capacity" 64
Table 21. Overall Needs 67
Table 22. Current and Future Antenna Technologies 67
Table 23. Challenges Associated with "Capacity Needs" 68
Table 24. Challenges associated with "Robustness" 69
Table 25. Challenges Associated with "Security" 70
Table 26. Potential Solutions for "Capacity Needs" 70
Table 27. Potential Solutions Associated with "Robustness" 70
Table 28. Potential Solutions to Address "Security" 71
Table 29. Challenges Associated with all "Needs" 73
Table 30. Potential Solutions to Address "Need #1: AI-driven network planning and routing" 74
Table 31. Potential Solutions to Address "Need #2: ML for positioning" 74
Table 32. Potential Solutions to Address "Need #3: ML for applications including image/video delivery" 75
Table 33. Potential Solutions to Address "Need #4: AI-driven enhanced security" 75
Table 34. Potential Solutions to Address "Need #5: ML for resource management" 76
Table 35. Potential Solutions to Address "Need #6: AI-driven physical layer communications" 76
Table 36. Challenges Associated with "MEC" 80
Table 37. Potential Solutions to Address “MEC” 80
Table 38. UE to satellite propagation delay (Reference: TS 22.261 [82]) 85
Table 39. QoS requirements for satellite access (Reference: TS 22.261 [82]) 85
Table 40. Challenges Associated with "QoS/QoE” 88
Table 41. Potential Solutions to Address “QoS/QoE”88
Table 42. Challenges and Solutions to address the needs related to “Security” 98
Table 43. Challenges Associated with “Support Satellite Location Management” 99
Table 44. Potential Solutions to Address “Support Satellite Location Management” 100
Table 45. Challenges Associated with “Support Terminal Handover” 101
Table 46. Potential Solutions to Address “Support Terminal Handover” 102
Table 47. Challenges Associated with “Support Group of Terminals Handover” 102
Table 48. Potential Solutions to Address “Support Group of Terminals Handover” 103
Table 49. Challenges Associated with “Optimized Resource Allocation” 104
Table 50. Potential Solutions to Address “Optimized Resource Allocation” 105
Table 51. Challenges Associated with “Efficient Support of IoT Applications” 106
Table 52. Potential Solutions to Address “Efficient Support of IoT Applications” 106
Table 53. Challenges Associated with “Efficient interference management and spectrum utilization” 107
Table 54. Potential Solutions to Address “Efficient interference management and spectrum utilization” 108
Table 55. Challenges Associated with “Intersatellite Links” 109
Table 56. Potential Solutions to Address “Intersatellite Links Challenge” 109
Table 57. Challenges Associated with “On-Board Processing” 110
Table 58. Potential Solutions to Address “On-Board Processing Challenges” 110
Table 59. Challenges Associated with “Dual RF/FSO” 111
Table 60. Potential Solutions to Address “Dual RF/FSO Challenges” 112
Table 61. Challenges Associated with “Routing Protocols” 112
Table 62. Potential Solutions to Address “Routing Protocols Challenges” 113
Table 63. Challenges Associated with “Network Function Virtualization” 114
Table 64. Potential Solutions to Address “Network Function Virtualization” 114
Table 65. Challenges Associated with “Network Slicing” 115
Table 66. Potential Solutions to Address “Network Slicing” 115
Table 67. Challenges Associated with “Software-Defined Satellite Networks” 116
Table 68. Potential Solutions to Address “Software-Defined Satellite Networks” 116
Table 69. Needs for Standardization 117
Table 70. Challenges Associated with “Standardization Needs” 117
Table 71. Potential Solutions to Address “Standardization Needs” 118
Figures

Figure 1. Communications application domains typically addressed by satellite networks. Reference: ESOA 5G White Paper [3] 4

Figure 2. Modern Wireless Use Cases. Reference: IMT-2020/1-E, enhanced by present authors [4] 5

Figure 3. Cross-cut matrix (blue color cells refer to meetings carried out this year for the 2022 edition of the report) 7

Figure 4. Use case-1 15

Figure 5. Use case-2 16

Figure 6. Use case-3 16

Figure 7. Use case-4 17

Figure 8. Use case-5 18

Figure 9. Use case-6 18

Figure 10. Use case-7 19

Figure 11. Use case-8 20

Figure 12. Use case-9 20

Figure 13. Use case-10 21

Figure 14. Use case-11 22

Figure 15. Use case-12a 23

Figure 16. Use case-12b 24

Figure 17. Use case-12c 25

Figure 18. Use case-12d 26

Figure 19. Direct Access Use Case-1.a 26

Figure 20. Direct Access Use Case-1.b 26

Figure 21. Direct Access Use Case-1.c 27

Figure 22. Direct Access Use Case-1.d 28

Figure 23. Direct Access Use Case-1.e 28

Figure 24. Direct Access Use Case-1.f (top and bottom figures illustrate the non-federated case and federated cases, respectively) 29

Figure 25. Direct Access Use Case-1.g for federated service providers 30

Figure 26. Direct Access Use Case-1.h where HEO satellites are utilized in an opportunistic manner 31

Figure 27. Direct Access Use Case-2.a 32
Figure 61. 5G QoS requirements [83]. 86

Figure 62. 5G network functions architecture, including User Data Management (UDM) in the core. 90

Figure 63. GEO (Geosynchronous Orbit), HEO (Highly Elliptical Orbit), MEO (Medium Earth Orbit), LEO (Low Earth Orbit), and HAP (High Altitude Platforms) [1] 92

Figure 64. Hierarchical Layered Security Architecture 97

Figure 65. Use of 5G LEO satellites and Cloud Service 156

Figure 66. Evolution of 3GPP standardization in Releases [B2] 157

Figure 67. Release 17 schedule 160
ABSTRACT

The fifth generation (5G) Wireless Communication systems development has brought out a paradigm shift using advanced technologies e.g., softwarization, virtualization, Massive MIMO, ultra-densification and introduction of new frequency bands. However, as the societal needs grow, and to satisfy UN’s Sustainable Development Goals (SDGs), 6G and beyond systems are envisioned. Non-Terrestrial Networks including satellite systems, Unmanned Aerial Vehicles (UAVs) and High-Altitude Platforms (HAPs) provide the best solutions to connect the unconnected, unserved and underserved in remote and rural areas in particular.

Over the past few decades, Geo Synchronous Orbits (GSO) satellite systems have been deployed to support broadband services, backhauling, Disaster Recovery and Continuity of Operations (DR-COOP) and emergency services. Recently, there is a considerable renewed interest in planning and developing non-GSO satellite systems. Within the next few years several thousands of Low Earth Orbit (LEO) satellites and mega LEO constellations will be ready to provide global Internet services.

This report is the 2022 Edition of the INGR Satellite Working Group Report, subsequent to the previous two editions [1] [2]. The topics considered in this INGR Satellite WG 2022 Edition of the roadmap are the following taking 6G systems into account: applications and services, reference architectures (both backhaul and direct access), satellite IoT, mmWave use for satellite networks, machine learning and artificial intelligence, edge computing, QoS/QoE, security, network management and standardization. The work on the roadmap will continue towards the next edition of the roadmap addressing new challenges and potential solutions for future networks.

Key words
Satellite Communications, Satellite Networks, Waveforms, MIMO, mmWave, OFDM, QoS, QoE, Security, Network Architecture, LEO, MEO, GEO, HAP, UAV, MEC, AI/ML, IoT
CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sastri Kota (Chair)</td>
<td>SoHum Consultants, USA, and University of Oulu, Finland</td>
</tr>
<tr>
<td>Giovanni Giambene (co-Chair)</td>
<td>University of Siena, Italy</td>
</tr>
<tr>
<td>Mohammed Abdelsadek</td>
<td>Carleton University, Canada</td>
</tr>
<tr>
<td>Mohamed-Slim Alouini</td>
<td>KAUST, Kingdom of Saudi Arabia</td>
</tr>
<tr>
<td>Sarath Babu</td>
<td>Iowa State University, USA</td>
</tr>
<tr>
<td>Joan Bas</td>
<td>CTTC, Spain</td>
</tr>
<tr>
<td>Sachin Chaudhari</td>
<td>International Institute of Information Technology Hyderabad (IIITH), India</td>
</tr>
<tr>
<td>Debrabrata Dalai</td>
<td>Indian Institute of Space Science and Technology, India</td>
</tr>
<tr>
<td>Tasneem Darwish</td>
<td>Carleton University, Canada</td>
</tr>
<tr>
<td>Tomaso de Cola</td>
<td>DLR, Germany</td>
</tr>
<tr>
<td>Thomas Delamotte</td>
<td>Bundeswehr University Munich, Germany</td>
</tr>
<tr>
<td>Ashutosh Dutta</td>
<td>Johns Hopkins University Applied Physics Lab, USA</td>
</tr>
<tr>
<td>Ayush Dwivedi</td>
<td>International Institute of Information Technology Hyderabad (IIITH), India</td>
</tr>
<tr>
<td>Michael Enright</td>
<td>Quantum Dimensions, USA</td>
</tr>
<tr>
<td>Marco Giordani</td>
<td>University of Padova, Italy</td>
</tr>
<tr>
<td>Alberto Gotta</td>
<td>ISTI-CNR, Pisa, Italy</td>
</tr>
<tr>
<td>Eman Hammad</td>
<td>Texas A&M University, USA</td>
</tr>
<tr>
<td>Tamer Khattab</td>
<td>Qatar University, Qatar</td>
</tr>
<tr>
<td>Andreas Knopp</td>
<td>Bundeswehr University Munich, Germany</td>
</tr>
<tr>
<td>Gunes Karabulut Kurt</td>
<td>Polytechnique Montréal, Montreal, Canada</td>
</tr>
<tr>
<td>B. S. Manoj</td>
<td>Indian Institute of Space Science and Technology, India</td>
</tr>
<tr>
<td>Jean-Daniel Medjo Me Biomo</td>
<td>Carleton University, Canada</td>
</tr>
</tbody>
</table>
Acknowledgment

Carleton University's contributions have been supported in part by MDA, Canada, in part by Mitacs, Canada, and in part by the National Research Council Canada's (NRC) High Throughput Secure Networks program (CSTIP Grants #CH-HTSN-607 and #CH-HTSN-608) within the Optical Satellite Communications Canada (OSC) framework.
Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

Step 1. [Click here to join the Future Networks initiative](#) (free for any IEEE Society member, and low-cost for non-members)

Step 2. Return to the [INGR page](#) to download full chapters.

14 chapters available!