

International Network Generations Roadmap -2021 Edition-

Artificial Intelligence and Machine Learning

An IEEE 5G and Beyond Technology futurenetworks.ieee.org/roadmap

Wi-Fi® and Wi-Fi Alliance® are registered trademarks of Wi-Fi Alliance.

The IEEE emblem is a trademark owned by the IEEE.

"IEEE", the IEEE logo, and other IEEE logos and titles (IEEE 802.11TM, IEEE P1785TM, IEEE P287TM, IEEE P1770TM, IEEE P149TM, IEEE 1720TM, etc.) are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated. All other products, company names or other marks appearing on these sites are the trademarks of their respective owners. Nothing contained in these sites should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademark displayed on these sites without prior written permission of IEEE or other trademark owners.

This edition of the INGR is dedicated to the memory of Earl McCune Jr., who left us tragically and too soon on 27 May 2020. Earl was a microwave/RF guru, brilliant technologist, major industry/IEEE contributor, global visionary, keen skeptic, and all around fantastic human being. He was a major contributor to the INGR's early work on energy efficiency, millimeter-wave, and hardware. He worked for a technologically advanced yet more energy efficient world, and the contents of the INGR are a tribute to that vision. Rest in peace, Earl!

Table of Contents

1.	Intro	duction	1
1.	1.	Working Group Vision	1
1.	2.	Scope of Working Group Effort	1
1.	3.	Linkages and Stakeholders	2
2.	Toda	y's Landscape	3
2.	1.	Types of Learning	3
2.	2.	Application of Learning to 5G and Future Networks	6
3.	Futur	re State	8
3.	1.	AI/ML for Network Automation	9
3.	2.	AI/ML for Network Slicing	11
3.	3.	AI/ML for Network Digital Twins	12
3.	4.	AI/ML for Security	12
3.	5.	AI/ML for Dynamic Spectrum Access	13
3.	6.	AI/ML for Cloud Computing	15
3.	7.	AI/ML for Multi-access Edge Computing	16
4.	Ne	eds, Challenges, and Enablers and Potential Solutions	17
4.	1.	Networking Slicing	17
	4.1.1	. Needs, Challenges, and Potential Solutions	17
	4.1.2	. Roadmap Timeline Chart	18
4.	2.	Network Digital Twins	18
	4.2.1	. Needs, Challenges, and Potential Solutions	18
	4.2.2	. Roadmap Timeline Chart	20
4.	3.	Security	21
	4.3.1	. Needs, Challenges, and Potential Solutions	21
	4.3.2	. Roadmap Timeline Chart	23
4.	4.	Dynamic Spectrum Access	25
	4.4.1	. Needs, Challenges, and Potential Solutions	25
4.	5.	Cloud Computing	28
	4.5.1	. Needs, Challenges, and Potential Solutions	28
	4.5.2	. Roadmap Timeline Chart	29
4.	6.	Multi-Access Edge Computing	32
	4.6.1	. Needs, Challenges, and Potential Solutions	32
	4.6.2	. Roadmap Timeline Chart	32
5.	Conc	lusion	34
5.	1.	Summary of Conclusions	34
5.	2.	Working Group Recommendations	35
6.	Cont	ributors	36
7.	Refe	rences	37
8.	Acro	nyms/abbreviations	40

9. Appendix	44
9.1. Appendix A – Supplemental Information on AI/ML Workflow	44
9.1.1. Data Handling	44
Data Acquisition	44
Data Labeling	45
Using Existing Data and Models	45
AI/ML Stack	46
Infrastructure Component	46
Development Component	47
Migration Based on IaaS	48
Migration Based on Managed IaaS	48
Migration Based on Cognition-aaS	49
9.2. Appendix B – Supplemental Information on AI/ML for Security	50

List of Tables

Table 1. Network Slicing Needs, Challenges, and Enablers and Potential Solutions	18
Table 2. Network Digital Twins Needs, Challenges, and Enablers and Potential Solutions	20
Table 3. Summary of Future 5G AI/ML Security Research Areas	23
Table 4. Security Needs, Challenges, and Enablers and Potential Solutions	23
Table 5. Dynamic Spectrum Access Needs, Challenges, and Enablers and Potential Solutions	27
Table 6. Cloud Computing Needs, Challenges, and Enablers and Potential Solutions	29
Table 7. MEC Needs, Challenges, and Enablers and Potential Solutions	32
Table 8. Data Acquisition Techniques	44
Table 9. Data Labeling Categories	45
Table 10. A Classification of Techniques for Improving Existing Data and Models	46
List of Figures	
Figure 1. Artificial Intelligence and Its Relationship to Machine Learning and Deep Learning	3
Figure 2. Classification, Regression, Clustering and Anomaly Detection	4
Figure 3. Machine Learning with Neural Networks	5
Figure 4. A Multi-Class Deep Neural Network	5
Figure 5. Reinforcement Learning Paradigm	6
Figure 6. 5G Requirements and Market Verticals	8
Figure 7. 5G AI/ML E2E Operations	9
Figure 8. Machine Reasoning and Machine Learning to realize vision of Intent Based Networks	9
Figure 9. Network Resource Adaptation with Reinforcement Learning	10
Figure 10. ETSI 5G System architecture [18]	11
Figure 11. 5G Security Cloud	13
Figure 12. Architecture of a Dynamic Spectrum Access (DSA) Radio Node with Cognitive Processing [Ref-1900.1].	14
Figure 13. Cloud delivery models [16]	15
Figure 14. An example of optical network DT with aid of ML-based monitoring techniques	19
Figure 15. 5G Security Pillars	21
Figure 16. Application of Control Loop algorithm for Predictive Security [20]	22
Figure 17. Key Functions of an Intelligent DSA Radio Mapped to Network Infrastructure Components	26
Figure 18. Intelligent Load Balancing	32
Figure 19. Fault Discovery and Recovery	32
Figure 20. AI/ML Stack	47
Figure 21. AI/ML Execution in Cloud-based on IaaS	48
Figure 22. AI/ML Execution in Cloud-based on Managed IaaS	49
Figure 23. AI/ML Execution in Cloud-based on Cognition-aaS	49

ABSTRACT

In the evolution of artificial Intelligence (AI) and machine learning (ML), reasoning, knowledge representation, planning, learning, natural language processing, perception, and the ability to move and manipulate objects have been widely used. These features enable the creation of intelligent mechanisms for decision support to overcome the limits of human knowledge processing. In addition, ML algorithms enable applications to draw conclusions and make predictions based on existing data without human supervision, leading to quick, near-optimal solutions even in problems with high dimensionality. Hence, autonomy is a key aspect of current and future AI/ML algorithms.

This white paper focuses on the development and implementation of AI/ML technologies for 5G and future networks. The objective is to illustrate how these technologies can be smoothly migrated into 5G systems to increase their performance and to decrease their cost.

AI/ML applications for 5G are wide and diverse. In this document, some of the key areas are described which includes networking, securing, cloud computing and others. Over time, this white paper will evolve to encompass even more areas where AI/ML technologies can improve future network performance objectives.

Key words:

AI, ML, DL, CNN, DNN, RNN, GAN, GPU, Cloud Computing, MEC