

International Network Generations Roadmap -2021 Edition-

Energy Efficiency

An IEEE 5G and Beyond Technoolgy Roadmap futurenetworks.ieee.org/roadmap

Wi-Fi® and Wi-Fi Alliance® are registered trademarks of Wi-Fi Alliance.

The IEEE emblem is a trademark owned by the IEEE.

"IEEE", the IEEE logo, and other IEEE logos and titles (IEEE 802.11TM, IEEE P1785TM, IEEE P287TM, IEEE P1770TM, IEEE P149TM, IEEE 1720TM, etc.) are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated. All other products, company names or other marks appearing on these sites are the trademarks of their respective owners. Nothing contained in these sites should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademark displayed on these sites without prior written permission of IEEE or other trademark owners.

This edition of the INGR is dedicated to the memory of Earl McCune Jr., who left us tragically and too soon on 27 May 2020. Earl was a microwave/RF guru, brilliant technologist, major industry/IEEE contributor, global visionary, keen skeptic, and all around fantastic human being. He was a major contributor to the INGR's early work on energy efficiency, millimeter-wave, and hardware. He worked for a technologically advanced yet more energy efficient world, and the contents of the INGR are a tribute to that vision. Rest in peace, Earl!

Table of Contents

2. Working Group Vison 2 2.1. Scope of Working Group Effort 3 3. Zoday's Landscape 3 3. Today's Landscape 5 3.1. Current State of Technology and Research 19 3.1.1. The Physics of RP Transmission 19 3.1.2. Requirements on Unwanted Emissions Must Be Satisfied 20 3.1.3. The Need to Address the Whole Ecosystem 21 3.2. Drivers and Technology Targets 21 3.2.1. SG&B Applications Driving EF System Design Needs 21 3.2.3. SG&B Business Drivers 22 3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 27 3.2.4. Network Energy Architecture 27 3.2.5. Applications Deployment Optimization 36 3.2.8. Applications Deployment Optimization 36 3.2.9. Al Use for Network Optimization 37 4. Future State (2031) 31 4.1. Vision of Future Technology 32 4.1.2. Ubiquitous HetNets of Small Cells 37 4.1.3. Kodel Validation 36 4.2.4. So Case Studies 32 4.1.4. Model Complexity 37 4.2.1. Overview of Systems (SoS)	1.	Intr	oduction	_ 1
2.2. Linkages and Stakeholders 3 3. Today's Landscape 5 3.1. Current State of Technology and Research 19 3.1. The Physics of RF Transmission 19 3.1. The Physics of RF Transmission 20 3.1. The Need to Address the Whole Ecosystem 21 3.2. Drivers and Technology Targets 21 3.2.1. The Impacts of a Virtualized World 22 3.2.2. The Impacts of a Virtualized World 23 3.2.3. SG&B Bysiness Drivers 24 3.2.3. SG&B Bysiness Drivers 27 3.2.4. All Dee to Pattice to the Edge and Corresponding Data Processing Architecture 27 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 30 3.2.9. All Use for Network Optimization 30 3.2.9. All Use for Network Optimization 31 4.1. Vision of Future Technology 32 4.1. Ubiquitous Hework Optimization 32 4.1.1. Cell-tree Architectures 33 4.1.2. <td< th=""><th>2.</th><th></th><th></th><th>_ 2</th></td<>	2.			_ 2
3. Today's Landscape 5 3.1. Current State of Technology and Research 19 3.1.1. The Physics of RF Transmission 19 3.1.2. Requirements on Unwanted Emissions Must Be Satisfied 20 3.1.3. The Need to Address the Whole Ecosystem 21 3.2. Drivers and Technology Targets 21 3.2.1. 56&B Applications Driving EE System Design Needs 21 3.2.2. The Impacts of a Virtualized World 23 3.2.3. 56&B Business Drivers 24 3.2.4. The Role of a Virtualized World 23 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 33 4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HeNtest of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.2.5. So Case Studies 42 4.		2.1.	Scope of Working Group Effort	_ 3
3. Today's Landscape 5 3.1. Current State of Technology and Research 19 3.1.1. The Physics of RF Transmission 19 3.1.2. Requirements on luwanted Emissions Must Be Satisfied 20 3.1.3. The Need to Address the Whole Ecosystem 21 3.2.1. SG&B Applications Driving EE System Design Needs 21 3.2.2. The Impacts of a Virtualized World 23 3.2.3. SG&B Business Drivers 24 3.2.4. SG&B Applications Today 27 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 4.1. Cell-free Architectures 33 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 34 4.2.5. Model Validation 36 4.2.6. Sof Tool architect		2.2.	Linkages and Stakeholders	_ 3
31. Current State of Technology and Research 19 31.1. The Physics of RF Transmission 19 31.2. Requirements on Unwanted Emissions Must Be Satisfied 20 31.3. The Need to Address the Whole Ecosystem 21 32.1. Drivers and Technology Targets 21 32.2. The Impacts of a Virtualized World 23 32.3. SG&B Applications Driving EE System Design Needs 23 32.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 27 32.5. Network Energy Architecture 27 32.6. RF Base Stations Today 27 32.7. The Role of AD leep Learning 30 32.8. Applications Deployment Optimization 30 32.9. At Use for Network Optimization 30 32.9. At Use for Network Optimization 32 4.1. Vision of Future Technology 33 41.3 4.1. Cell-free Architectures 33 41.3 4.1.1. Cell-free Architectures 33 41.3 4.1.2. Ubiquitous HetNets of Small Cells 33 41.3 <th>3</th> <th>Tod</th> <th></th> <th></th>	3	Tod		
3.1.1 The Physics of RF Transmission 19 3.1.2 Requirements on Unwanted Emissions Must Be Satisfied 20 3.1.3 The Need to Address the Whole Ecosystem 21 3.2. Drivers and Technology Targets 21 3.2.1 5G&B Applications Driving EE System Design Needs 21 3.2.2 The Impacts of a Virtualized World 23 3.2.3 5G&B Business Drivers 24 3.2.4 Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 27 3.2.5 Network Energy Architecture 27 3.2.6 RF Base Stations Today 27 3.2.7 The Role of Al Deep Learning 30 3.2.9 Al Use for Network Optimization 30 3.2.9 Al Use for Network Optimization 30 4.1 Vision of Future Technology 31 4.1.1 Cell-free Architectures 33 4.1.2 Ubiquitous HetNets of Small Cells 33 4.1.3 Model Complexity 35 4.1.4 Model Complexity 35 4.1.5 Model Validation 36 4.2.6	_			-
3.1.2. Requirements on Unwanted Emissions Must Be Satisfied 20 3.1.3. The Need to Address the Whole Ecosystem 21 3.2. Drivers and Technology Targets 21 3.2.1. 5G&B Daylications Driving EE System Design Needs 21 3.2.1. 5G&B Dusiness Drivers 24 3.2.3. 5G&B Dusiness Drivers 24 3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 25 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of AI Deep Learning. 30 3.2.8. Applications Deployment Optimization 30 3.2.9. AI Use for Network Optimization 30 3.2.9. AI Use for Network Optimization 30 3.4.1. Cell Tree Architectures 33 4.1. Vision of Future Technology 32 4.1.1. Cell Complexity 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Validation	•			
3.1.3. The Need to Address the Whole Ecosystem 21 3.2. Drivers and Technology Targets 21 3.2.1. 5G&B Applications Driving EE System Design Needs 21 3.2.2. The Impacts of a Virtualized World 23 3.2.3. 5G&B Business Drivers 24 3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 27 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 31 4.1. Vision of Future Technology 32 4.1.1. Vision of Future Technology 32 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectures 37 4.2.1. 0verview of Systems of Systems (SoS) 37 4.2.2. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 32 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 <td< td=""><td></td><td>-</td><td>Requirements on Unwanted Emissions Must Re Satisfied</td><td>20</td></td<>		-	Requirements on Unwanted Emissions Must Re Satisfied	20
3.2. Drivers and Technology Targets 21 3.2.1. 5G&B Applications Driving EE System Design Needs 21 3.2.2. The Impacts of a Virtualized World 23 3.2.3. SG&B Business Drivers 24 3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 27 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of AI Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 3.4.1. Cell-free Architectures 33 4.1. Cell-free Architectures 33 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.2.5. SoS Case Studies 42 4.2.1. Overview of Systems of Systems (SoS) 37				
3.2.1. 5G&B Applications Driving EE System Design Needs 21 3.2.2. The Impacts of a Virtualized World 23 3.2.3. 5G&B Business Drivers 24 3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 25 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.9. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 31 4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Model Complexity 35 4.1.4. Model Complexity 35 4.2.5. So Scase Studies 37 4.2.6. Energy-Efficient Architectural Framework 37 4.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energ				
3.2.2. The Impacts of a Virtualized World 23 3.2.3. 5G&B Business Drivers 24 3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 25 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of AI Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. AI Use for Network Optimization 30 3.2.9. AI Use for Network Optimization 30 4.1 Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Validation 36 4.2.5. Model Validation 36 4.2.6. Energy-Efficient Architectural Framework 37 4.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42.2.2.2. 4.2.2. Sos Case Studies 42 4.2.3. Systems of Sys	•		87 8	
3.2.3. 56&B Business Drivers 24 3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 25 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 4. Future State (2031) 31 4.1. Cell-free Architectures 33 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2.1. Deverview of Systems of Systems (SoS) 37 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 1: Cognizant, Real-				
3.2.4. Data Center Efficiencies to the Edge and Corresponding Data Processing Architecture 25 3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 4. Vision of Future Technology 31 4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 35 4.1.5. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems (SoS) 37 4.2.2. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42.				
3.2.5. Network Energy Architecture 27 3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 4. Future State (2031) 31 4.1. Cell-free Architectures 33 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems (SoS) 37 4.2.2. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. SoS Tool architecture 44 4.2.4. SoS Tool architecture 44 <td></td> <td></td> <td></td> <td></td>				
3.2.6. RF Base Stations Today 27 3.2.7. The Role of Al Deep Learning 30 3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 3.2.9. Al Use for Network Optimization 30 4. Future State (2031) 31 4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 </td <td></td> <td>3.2.5</td> <td></td> <td></td>		3.2.5		
3.2.8. Applications Deployment Optimization 30 3.2.9. Al Use for Network Optimization 30 4. Future State (2031) 31 4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1. Challenges 47 5.2.1. Key Challenges at the Physical Layer 51 5.2.2.1. Witigating The Inhibitors to EE System Design <td></td> <td>3.2.6</td> <td>. RF Base Stations Today</td> <td>27</td>		3.2.6	. RF Base Stations Today	27
3.2.9. Al Use for Network Optimization 30 4. Future State (2031) 31 4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 47 5.2.1.1. Inhibitors to EE System Design 47 5.2.2.2. Potential Solutions 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Mitigating The Inhibitors to EE System Design 53			1 0	
4. Future State (2031) 31 4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 42. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. SoS Case Studies 42 4.2.2. SoS Case Studies 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy Resources Availability 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2.1.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 50 5.2.2.1. Mitigating The Inhibitors to EE System Design 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53			FF	
4.1. Vision of Future Technology 32 4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. SoS Case Studies 42 4.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 46 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency • Need #1 47 5.2.1.1. Inhibitors to EE System Design 47 5.2.2.1. Key Challenges at the Physical Layer 51 5.2.2. Potential S		3.2.9	. AI Use for Network Optimization	30
4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. SoS Gase Studies 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy Resources Availability 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 53 5.2.2. Potential Solutions 50 5.2.2.	4 .	Futi	ıre State (2031)	31
4.1.1. Cell-free Architectures 33 4.1.2. Ubiquitous HetNets of Small Cells 33 4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. SoS Gase Studies 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy Resources Availability 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 53 5.2.2. Potential Solutions 50 5.2.2.		4.1.	Vision of Future Technology	32
4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.1.5. Model Validation 36 4.1.6. Model Validation 36 4.1.7. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. SoS Case Studies 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 48 5.2.1.3. Large-scale Deployment of IoT Devices 50 5.2.2.4. Efficient Physical Layer O		4.1.1		
4.1.3. Enabling/Deploying Energy-optimal Control Feedback Loop(s) 34 4.1.4. Model Complexity 35 4.1.4. Model Complexity 35 4.1.5. Model Validation 36 4.1.5. Model Validation 36 4.2. Energy-Efficient Architectural Framework 37 4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy 42 4.2.2.2. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1. Inhibitors to EE System Design 47 5.2.1. Inhibitors to EE System Design 51 5.2.2. Potential Solutions 51 5.		4.1.2	. Ubiquitous HetNets of Small Cells	33
4.1.5. Model Validation			. Enabling/Deploying Energy-optimal Control Feedback Loop(s)	34
4.2. Energy-Efficient Architectural Framework				
4.2.1. Overview of Systems of Systems (SoS) 37 4.2.2. SoS Case Studies 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy Resources Availability 42 4.2.2.1. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.2.2. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1. Challenges 47 5.2.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 48 5.2.1.3. Large-scale Deployment of IoT Devices 50 5.2.2. Potential Solutions 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1.		4.1.5	. Model Validation	36
4.2.2. SoS Case Studies 42 4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy Resources Availability 42 4.2.2.2. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1. Challenges 47 5.2.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 48 5.2.2. Potential Solutions 51 5.2.2. Potential Solutions 51 5.2.2. Potential Solutions 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Efficient Physical Layer Operation in Active Mode Using Spatial	4	4.2.	Energy-Efficient Architectural Framework	37
4.2.2.1. Example 1: Cognizant, Real-time Power-grid Systems Management Under Variable Energy Resources Availability			. Overview of Systems of Systems (SoS)	37
Resources Availability 42 4.2.2.2. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection 43 4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1. Challenges 47 5.2.1. Inhibitors to EE System Design 47 5.2.1.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 48 5.2.2.1. Large-scale Deployment of IoT Devices 50 5.2.2.1. Mitigating The Inhibitors to EE System Design 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.2. Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing 54 5.2.2.3. RF Hardware Evolution 56 5.2.2.4. Efficient Physical Layer Operation in Idle Mode 57				42
4.2.2.2. Example 2: Estimation of Data Transmission Costs in a Fiber-Optic Connection				40
4.2.3. Systems-of-Systems (SoS) Tool Roadmap 44 4.2.4. SoS Tool architecture 44 5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1. Challenges 47 5.2.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 48 5.2.2. Potential Solutions 50 5.2.2. Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing 53 5.2.2.3. RF Hardware Evolution 56 5.2.2.4. Efficient Physical Layer Operation in Idle Mode 57			esources Availability	
4.2.4. Sos Tool architecture				
5. Needs, Challenges, and Enablers and Potential Solutions 46 5.1. Summary 46 5.2. Network Efficiency - Need #1 47 5.2.1. Challenges 47 5.2.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 48 5.2.1.3. Large-scale Deployment of IoT Devices 50 5.2.2. Potential Solutions 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.2. Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing 54 5.2.2.3. RF Hardware Evolution 56 5.2.2.4. Efficient Physical Layer Operation in Idle Mode 57				
5.1. Summary	~			
5.2. Network Efficiency - Need #1				
5.2.1. Challenges 47 5.2.1.1. Inhibitors to EE System Design 47 5.2.1.2. Key Challenges at the Physical Layer 48 5.2.1.3. Large-scale Deployment of IoT Devices 50 5.2.2. Potential Solutions 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.2. Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing 54 5.2.2.3. RF Hardware Evolution 56 5.2.2.4. Efficient Physical Layer Operation in Idle Mode 57		5.1.	Summary	46
5.2.1.1. Inhibitors to EE System Design		5.2.	Network Efficiency - Need #1	47
5.2.1.2. Key Challenges at the Physical Layer			. Challenges	47
5.2.1.3. Large-scale Deployment of IoT Devices 50 5.2.2. Potential Solutions 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.2. Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing 54 5.2.2.3. RF Hardware Evolution 56 5.2.2.4. Efficient Physical Layer Operation in Idle Mode 57				
5.2.2. Potential Solutions 51 5.2.2.1. Mitigating The Inhibitors to EE System Design 53 5.2.2.2. Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing 54 5.2.2.3. RF Hardware Evolution 56 5.2.2.4. Efficient Physical Layer Operation in Idle Mode 57				
5.2.2.1.Mitigating The Inhibitors to EE System Design535.2.2.2.Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing545.2.2.3.RF Hardware Evolution565.2.2.4.Efficient Physical Layer Operation in Idle Mode57				
5.2.2.2.Efficient Physical Layer Operation in Active Mode Using Spatial Multiplexing545.2.2.3.RF Hardware Evolution565.2.2.4.Efficient Physical Layer Operation in Idle Mode57			. Polenual Solutions	51
5.2.2.3. RF Hardware Evolution56 5.2.2.4. Efficient Physical Layer Operation in Idle Mode57				
5.2.2.4. Efficient Physical Layer Operation in Idle Mode57 57 5.2.2.5. Wake-up Radio (WuR) for User Devices in Idle Mode59				
5.2.2.5. Wake-up Radio (WuR) for User Devices in Idle Mode 59			2.2.4. Efficient Physical Layer Operation in Idle Mode	57
			2.2.5. Wake-up Radio (WuR) for User Devices in Idle Mode	59

5.2.2.6. Energy Harvesting (EH)	59
5.2.2.7. Backscattering Communication	
5.2.2.8. Wider Bandwidths and Visible Light Communication	61
5.3. Small Cell Migration - Need #2	63
5.3.1. Challenges	
5.3.2. Potential Solutions	
5.3.2.1. Characterizing Energy-Centric Coverage as "Carpeting"	64
5.3.2.2. Interference Management Within a Cell	67
5.3.2.3. Efficient Control Plane Transmission	
5.3.2.4. Interference Management Between Cells	68
5.3.2.5. Cell-free Architecture	68
5.3.2.6. Coverage Improvements with Intelligent Reflecting Surfaces	70
5.4. Base Station Power – Need #3	72
5.4.1. Challenges	72
5.4.1.1. Challenges with Unwanted Emissions	
5.4.1.2. RF Semiconductor Process Technologies Evolution and Application Fit	73
5.4.1.3. RF Semiconductor Challenges & Limitations for Massive MIMO and/or mmWave	
5.4.2. Potential Solutions	76
5.4.2. Potential Solutions	76
5.4.2.2. Power Electronics in 5G&B	76
5.4.2.3. Power Packaging	78
5.4.2.4. Thermal Mitigation	79
5.5. Economic Factors – Need #4	80
5.5.1. Challenges	
5.5.2. Potential Solutions	
5.6. Grid/Utility – Need #5	
5.6.1. Challenges	86
5.6.1.1. The 5GEG & Overall Risk 5G&B Applications Pose to the Utility Grid (Smart or Otherwis	
5.6.1.2. The Role of the Utility Grid in 5G&B	
5.6.1.3. Disaggregation of the Utility Grid	
5.6.1.4. Energy Storage	
5.6.2. Potential Solutions	
5.6.2.1. Powering Options for 5G Infrastructure Equipment	
5.6.2.2. Powering Opportunities	91
5.6.2.3. Applications of the Smart Grid	92
5.6.2.4. Network Power Integration	93
5.6.2.5. Case Study: A Smarter Grid	94
6. Standardization Landscape and Vision	97
6.1. Standardization Opportunities	
7. Conclusions and Recommendations	97
7.1. Summary of Conclusions	
7.2. Working Group Recommendations	
7.2. Working Group Recommendations 7.2.1. Future Work	
8. Contributors	101
9. References	102
10. Acronyms/abbreviations	110

Tables

Table 1. Overall, Major Need Categories Identified by the INGR EE WG		
Table 2. Challenges Associated with "NEED #1 - Network Efficiency"		
Table 3. Potential Solutions to Address "NEED #1 - Network Efficiency"	62	
Table 4. Challenges Associated with "NEED #2 - Small Cell Migration"	64	
Table 5. Potential Solutions to Address "NEED #2 - Small Cell Migration"	71	
Table 6. Challenges Associated with "NEED #3 - Base Station Power"		
Table 7. Potential Solutions to Address "NEED #3 - Base Station Power"	79	
Table 8. Challenges Associated with "NEED #4 - Economic Factors"	82	
Table 9. Potential Solutions to Address "NEED #4 - Economic Factors"	83	
Table 10. Challenges Associated with "NEED #5 - Grid/Utility"90		
Table 11. Potential Solutions to Address "NEED #5 - Grid/Utility"	95	

Figures

Figure 1. The IEEE INGR Cross-Cut Matrix for the EE WG4
Figure 2. Outside forces affecting the infrastructure 6
Figure 3. The 5G System- of-Systems (SoS) Block Diagram 7
Figure 4. The Power Value Chain (PVC) from Network Edge to Power Plant11
Figure 5. Attenuation of mmWave Transmission over the air [15]20
Figure 6. 28
Figure 7. The Systems-of-Systems (SoS) Block Analysis Template Model 38
Figure 8. The Systems-of-Systems (SoS) Power Value Chain (PVC) Chain Analysis (Static) Example Flow 39
Figure 9. The Systems-of-Systems (SoS) Network/System Optimization Chain Analysis (Dynamic) Example Flow 40
Figure 10. Management of Energy Sources as an additional input to sub-block level description 41
Figure 11. An example of Systems of Systems incorporating a RAN subsystem 42
Figure 12. The Power Grids form complex Systems of Systems 43
Figure 13. The energy consumption and energy efficiency of a base station depend on the traffic load. Itis desirable to the energy consumption proportional to the load, to get a constantly highenergy efficiency.49
Figure 14. Sequential processing of data in a self-driving vehicle 51
Figure 15. Flow of data in a self-driven vehicle and trade-offs in energy optimization52
Figure 16. Since the energy efficiency in active mode is the ratio between data throughput and energy consumption, there are three different ways that it can be improved. 55
Figure 17. Power consumption for a conventional 4x4 MIMO base station 57

- Figure 18. The idle mode power consumption in comparable LTE and NR configurations, showing that the average energy consumption is substantially smaller in NR thanks to the new sleep mode features 59
- Figure 19. Comparison of Base Station "Carpeting" at Various Power Levels and Frequencie 65
- Figure 20. The propagation comparison for a specific case of 2.5GHz using the CRC model data for a Suburban configuration. While a 200W Macro Cell provides extensive coverage, the 1W Small Cell enjoys a large efficiency advantage because RF propagation is significantly more lossy than 1/r2.66
- Figure 21. The networks will gradually transition from the cellular architecture to the left to the cell-free architecture to the right. 69
- Figure 22. A passive surface can be deployed to reflect signals from a base station towards shadowed areas. 70
- Figure 23. A reconfigurable surface can be utilized to direct signals from base stations to shadowed locations in an adaptive manner. 71
- Figure 24. Power Amplifiers Performance Survey 2000-Present [88]. 73
- Figure 25. The NPI Model 94
- Figure 26. The disaggregation of power, data communications, and communications about power 94

ABSTRACT

This 2021 Edition of the IEEE International Network Generations Roadmap (INGR) contains a new Chapter dedicated to Energy Efficiency, which builds upon the initial white paper released in April 2020 [1]. For this purpose, the Energy Efficiency Working Group developed an analysis of the energy efficiency constraints across the whole ecosystem of the Fifth Generation "5G" and following network infrastructure, which can be leveraged by all stakeholders to prioritize resources allocation and technology development to ensure that both technical and economic forecasts can be met. The complexity of the ecosystem and the traditionally siloed approach within the Industry has often prevented the adoption of a holistic approach to addressing the fundamental problem of energy, which is the ultimate constraint to any complex deployment. The proposed framework facilitates an assessment of bottlenecks and their implication on the network: it may be used by both academic and industry stakeholders to develop solutions that address the real issues and enable a healthy ecosystem.

After a comprehensive survey of the ecosystem and its challenges, the following key areas were selected for a more in-depth analysis:

- Network Efficiency
- Small Cell Migration
- Base Station Power
- Economic Factors
- Grid/Utility

This Chapter also identifies the need for a comprehensive "Systems-of-Systems" (SoS) analysis to address the complex inter-relations among the multiple layers, which the infrastructure leverages. An initial proposal describes how a model can be built to enable a comprehensive assessment of energy requirements across such a diverse ecosystem. A future step in the process will consolidate a proposal for standardization of this model, which can be utilized by all stakeholders for both analysis and forecasting of capabilities and return on investment.

Key words:

Energy Efficiency, 5G Energy Gap (5GEG), Power Value Chain (PVC), Power Cost Factor (PCF), Systems of Systems (SoS), Energy Harvesting (EH), Sustainable Power, Embodied Energy, 5G Economic Gap (5GEcG), 5G Equality Gap (5GEqG), 5G Derate Factor (5GDF), Assessment Framework This file is a free sample of this chapter. The full chapter is available exclusively to signed-in participants of the <u>IEEE Future Networks Community</u>.