

## International Network Generations Roadmap -2021 Edition-

# **Security and Privacy**



An IEEE 5G and Beyond Technology Roadmap futurenetworks.ieee.org/roadmap

Wi-Fi® and Wi-Fi Alliance® are registered trademarks of Wi-Fi Alliance.

The IEEE emblem is a trademark owned by the IEEE.

"IEEE", the IEEE logo, and other IEEE logos and titles (IEEE 802.11<sup>TM</sup>, IEEE P1785<sup>TM</sup>, IEEE P287<sup>TM</sup>, IEEE P1770<sup>TM</sup>, IEEE P149<sup>TM</sup>, IEEE 1720<sup>TM</sup>, etc.) are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated. All other products, company names or other marks appearing on these sites are the trademarks of their respective owners. Nothing contained in these sites should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademark displayed on these sites without prior written permission of IEEE or other trademark owners.

This edition of the INGR is dedicated to the memory of Earl McCune Jr., who left us tragically and too soon on 27 May 2020. Earl was a microwave/RF guru, brilliant technologist, major industry/IEEE contributor, global visionary, keen skeptic, and all around fantastic human being. He was a major contributor to the INGR's early work on energy efficiency, millimeter-wave, and hardware. He worked for a technologically advanced yet more energy efficient world, and the contents of the INGR are a tribute to that vision. Rest in peace, Earl!



#### **Table of Contents**

| 5        |
|----------|
|          |
|          |
| 9        |
| 11       |
| 11       |
| 12       |
| 12       |
| 14       |
| 15       |
| 16       |
| 17       |
| 17       |
| 20<br>21 |
| 23       |
| 25       |
| 25       |
| 26<br>26 |
| 26       |
| 27       |
| 27       |
| 29       |
| 29       |
| 29       |
| 29       |
| 30       |
| 31       |
| 31       |
| 31       |
| 31       |
| 32       |
| 32<br>32 |
|          |

|     | Emergency and First-Responder Networks SecurityAutonomous Vehicles, V2X Security | 35<br>35 |
|-----|----------------------------------------------------------------------------------|----------|
|     | /ML Security                                                                     |          |
|     | teroperability                                                                   |          |
|     | dustrial Control Systems (ISC): Industrial IoT Based SCADA                       |          |
| Sa  | ifety and Security                                                               | 40       |
|     | nallenges and Opportunities                                                      |          |
| Ca  | ategories of risk in the IIoT                                                    | 43       |
| 8.  | Standardization Opportunities                                                    | 44       |
| 9.  | Needs, Challenges, and Enablers and Potential Solutions                          | 45       |
| Su  | immary                                                                           | 45       |
| 10. | Conclusions and Recommendations                                                  | 50       |
| Su  | immary of Conclusions                                                            | 50       |
|     | <b>Torking Group Recommendations</b>                                             |          |
| 11. | Contributors                                                                     | 52       |
| IE  | CEE ComSoc North America Regional Board, TelNet Management Consulting, Inc       | 52       |
| 12. | References                                                                       | 53       |
| 13. | Acronyms/abbreviations                                                           | 55       |
|     |                                                                                  |          |

### Tables

| Table 1. Standards Organizations8                                                            |    |
|----------------------------------------------------------------------------------------------|----|
| Table 2. Selected 5G threat Scenarios13                                                      |    |
| Table 3. Threats for Scada Systems42                                                         |    |
| Table 4. Proactive Security for 5G-IoT—Needs, Challenges, Enablers, and Potential Solutions  | 45 |
| Table 5. AI/ML Security – Needs, Challenges, Enablers and Potential Solutions47              |    |
| Table 6. Digital Forensics Solutions for 5G Environments—Needs, Challenges, and Enablers and |    |

Table 6. Digital Forensics Solutions for 5G Environments—Needs, Challenges, and Enablers an Potential Solutions 48

#### Figures

| 5                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1. Key dimensions of 5G Networks, courtesy of 5G Lab Germany [4].                                                                                                                                                            |
| Figure 2. 5G & Beyond: Security Perspective, the progress of the 5G and beyond revolution may well be<br>hindered if security issues are not tackled early on while the systems are being designed,<br>standardized and deployed. 3 |
| Figure 3. 3GPP security architecture 11                                                                                                                                                                                             |
| Figure 4. 5G Threat Model 12                                                                                                                                                                                                        |
| Figure 5. NIST CSF Framework [12]. 15                                                                                                                                                                                               |
| Figure 6. Risk assessment process [13].16                                                                                                                                                                                           |
| Figure 7. Generic risk model with key factors [13]. 16                                                                                                                                                                              |
| Figure 8. 5G Security Pillars17                                                                                                                                                                                                     |
| Figure 9. Potential security issues with virtualization 18                                                                                                                                                                          |
| Figure 10. SDN Security - Select Cyber Risk Scenarios and Potential Mitigations 20                                                                                                                                                  |
| Figure 11. Network Slicing Security 22                                                                                                                                                                                              |
| Figure 12. Network Slicing Security – Select Risk Scenarios and Potential Mitigations 22                                                                                                                                            |
| Figure 13. Mobile Edge Security Context 24                                                                                                                                                                                          |
| Figure 14. Mobile Edge Security - Select Cyber Risk Scenarios and Potential Mitigations 24                                                                                                                                          |
| Figure 15. GEO (Geosynchronous Orbit), HEO (Highly Elliptical Orbit), MEO (Medium Earth Orbit), LEO (Low Earth Orbit), and HAP (High Altitude Platforms) [14]. 27                                                                   |
| Figure 16. O-RAN Architecture28                                                                                                                                                                                                     |
| Figure 17. Cloud RAN Security - Select Cyber Risk Scenarios and Potential Mitigations28                                                                                                                                             |
| Figure 18. Proactive 5G security 31                                                                                                                                                                                                 |
| Figure 19. Critical Infrastructure Inter-dependencies [1]. 33                                                                                                                                                                       |
| Figure 20. First Responder Use Case on Orchestration 35                                                                                                                                                                             |
| Figure 21. Architecture of the Machine Learning Function Orchestrator [15]. 38                                                                                                                                                      |
| Figure 22. IoT security Solution. 42                                                                                                                                                                                                |
|                                                                                                                                                                                                                                     |

Figure 23. IIoT based Scada Risk by Threats 44

#### ABSTRACT

The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability.

The working group scope fundamentally addresses the following:

- 5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape.
- 5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g. related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability.
- The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.

#### Key words:

5G Cybersecurity, security, privacy, data protection, reliability, resilience, mMTC, URLLC, SDN/NFV, cyber risk assessment and management, threat scenarios, cyber attacks, security controls, mitigation, defense.

This file is a free sample of this chapter. The full chapter is available exclusively to signed-in participants of the <u>IEEE Future Networks Community</u>.