This file is a free sample of this chapter.

The full chapter is available exclusively to signed-in participants of the IEEE Future Networks Community.

Click here to join the Future Networks Technical Community (free for any sponsoring IEEE Society member, and low-cost for non-members), then return to the INGR page to download full chapters.

Would you like to join an INGR Working Group?

Click here for contact information for each group.

Interested in booking a private session with INGR experts for your company? Contact an IEEE Account Manager to discuss an INGR Roadmap Virtual Private Event.

+1 800 701 4333 (USA/Canada)
+1 732 981 0060 (worldwide)

onlinesupport@ieee.org
Wi-Fi® and Wi-Fi Alliance® are registered trademarks of Wi-Fi Alliance.

The IEEE emblem is a trademark owned by the IEEE.

"IEEE", the IEEE logo, and other IEEE logos and titles (IEEE 802.11™, IEEE P1785™, IEEE P287™, IEEE P1770™, IEEE P149™, IEEE 1720™, etc.) are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated. All other products, company names, or other marks appearing on these sites are the trademarks of their respective owners. Nothing contained in these sites should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademark displayed on these sites without prior written permission of IEEE or other trademark owners.

Copyright © 2023
Table of Contents

1. Introduction ... 1
 1.1. 2023 Edition Update .. 1
 2. Working Group Vision .. 2
 2.1. Scope of Working Group Effort .. 2
 2.2. Linkages and Stakeholders ... 3
 3. Today’s Landscape ... 5
 3.1. 2021 Massive MIMO Workshop .. 5
 3.1.1. Very Large Antenna Arrays ... 6
 3.1.2. Open Radio Access Network (Open RAN) ... 6
 3.1.3. Energy Efficiency, Security, and Deployment .. 6
 3.1.4. Architectural, Spectral, and Algorithmic Challenges ... 6
 3.2. 2022 Massive MIMO Workshop .. 7
 3.2.1. Keynote Presentations .. 8
 3.2.2. Emerging New Technology Trends in Massive MIMO .. 8
 4. Future State (2033) .. 10
 4.1. mmWave Massive MIMO for HetNets ... 10
 4.2. MAC-PHY Cross-Layer Design for Massive MIMO in Future Wireless Systems 10
 4.3. Secure and Private Communications in Massive MIMO Wireless Systems 10
 4.4. Application of Artificial Intelligence and Machine Learning into Massive MIMO Wireless Systems .. 11
 4.5. Enabling Massive Connectivity with Massive MIMO .. 11
 4.6. Autonomous Massive MIMO for a Variety of Applications 11
 5. Needs, Challenges, Enablers, and Potential Solutions ... 12
 5.1. Summary .. 12
 5.2. mmWave Massive MIMO for HetNet .. 12
 5.2.1. Cell Association and Mobility Management .. 12
 5.2.2. Big Data Management with QoS Constraints ... 12
 5.2.3. Low-Cost Channel State Information Acquisition and Beamforming 13
 5.2.4. Resource Management ... 13
 5.3. Channel Estimation ... 13
 5.3.1. Sparse Adaptive Filtering Algorithms for Channel Estimation in Massive MIMO Systems .. 13
 6. Networking Planning and Operation ... 14
 6.1. Guarantee of Coverage .. 14
 6.2. Real-Time Support ... 14
 6.3. Implementation Cost and Low Carbon Footprint .. 14
 6.4. Spectral Efficiency .. 14
 6.5. Network Integration ... 15
 7. MAC-PHY Cross-Layer Design for Massive MIMO in Future Wireless Systems 16
 7.1. Physical Design ... 16
 7.2. MAC Protocol Designs .. 16
 7.3. Front-Haul Design ... 16
 7.4. Back-Haul Design ... 16
 8. Efficient Receiver Architecture Design ... 17
 8.1. Physical Layer Design .. 17
 8.2. MAC Design .. 17
 8.3. Front-Haul and Back-Haul Design ... 17
8.4. Security in Cross-Layer .. 17
9. Secure and Private Communications in Massive MIMO Wireless Systems .. 18
 9.1. Design of Precoding Schemes ... 18
 9.2. Cooperative Secure Transmission & Local Processing / Training ... 18
 9.3. Pilot Contamination ... 18
 9.4. Hardware Impairments .. 19
 9.5. Energy Efficiency Design ... 19
10. Academia and Industry Engagement ... 20
 10.1. Efficient Design .. 20
 10.2. Relay and Artificial Noise Aided Techniques ... 20
 10.3. Blind Channel Estimation and Precoding ... 20
 10.4. Hardware Impairment .. 20
 10.5. Energy Efficient Signal Processing ... 20
11. Application of Artificial Intelligence and Machine Learning into Massive MIMO Wireless Systems 21
 11.1. Resource Allocation Based on Machine Learning .. 21
 11.2. Channel Estimation Based on Machine Learning .. 21
 11.3. Signal Detection Based on Machine Learning ... 21
 11.4. Interference Management Based on Machine Learning .. 21
 11.5. Physical Layer Design Based on Machine Learning ... 21
 11.6. Detailed Design Considerations ... 22
 11.7. Overcome Overfitting and Underfitting ... 22
 11.8. System Modeling .. 22
 11.9. Modeling of Modulation and Demodulation ... 22
12. Enabling Massive Connectivity with Massive MIMO ... 23
 12.1. Low Complexity Channel Estimation ... 23
 12.2. Support for Machine-Type Devices .. 23
 12.3. Hybrid Precoding Design .. 23
 12.4. Communication Integration with M2M and Cloud / Edge Network ... 23
 12.5. Interference Coordination and Management ... 23
13. Challenges with Massive MIMO, Machine-Type, and Massive Connectivity ... 24
 13.1. A Simple Channel Acquisition Method .. 24
 13.2. New MAC Protocols that Support More Users ... 24
 13.3. Diverse Requirements from Machine-Type Communications ... 24
 13.4. Hybrid Precoding Design .. 24
 13.5. Related Standards ... 24
 14.1. Throughput Optimized Massive MIMO .. 25
 14.2. Reliability and Latency Optimized Massive MIMO ... 25
 14.3. Extended Coverage Optimized Massive MIMO ... 25
 14.4. Autonomous Massive MIMO for Various Applications ... 25
15. Internet-of-Things (IoT) / Machine-Type Communications ... 26
16. Scalability .. 27
17. Energy Efficiency and Low Carbon Footprint .. 28
18. Signaling Efficiency ... 29
19. Mobility .. 30
20. Intelligent Edge Network .. 31
21. Signal Processing and Massive MIMO ... 32
 21.1.1. Single-User Massive MIMO (SU-MMIMO) .. 33
 21.1.2. Channel Estimation ... 33
 21.1.3. Synchronization ... 33
 21.1.4. Beamforming ... 33
 21.1.5. mmWave Massive MIMO ... 33
 21.1.6. Efficiency ... 34
 21.2. Signal Processing for Multi-User Massive MIMO .. 34
 21.3. MU-MMIMO vs SU-MMIMO ... 34
22. Intelligent Reflecting Surfaces.. 36
 22.1. Channel Estimation ... 36
 22.2. Channel Models and Spectrum ... 36
 22.3. Type Selection .. 37
 22.4. RIS Placement ... 37
 22.5. Distributed IRS / RIS / IOS Communications .. 37
 22.6. Cooperative Beamforming in IRS / RIS Communications 37
 22.7. Machine Learning Aided IRS / RIS / IOS Communications 38
 22.8. Integrated Sensing and Communications Based on IRS / RIS / IOS and Massive MIMO ... 39
 22.9. Applications Enabled and Enhanced by IRS / RIS-Aided Massive MIMO Communications ... 39
23. Massive MIMO Radar ... 40
 23.1. Introduction .. 40
 23.2. Definition .. 40
 23.3. Future Vision .. 40
24. Holographic Radio .. 42
 24.1. Introduction .. 42
 24.2. Enabling Technology: Reconfigurable Holographic Surfaces 42
 24.3. Future Directions ... 43
25. Massive MIMO for Non-Terrestrial Networks and Deep Space Communications ... 45
 25.1. Massive MIMO for Non-Terrestrial Networks .. 45
 25.2. Massive MIMO for Broader Non-Terrestrial Networks and Deep-Space Communications ... 46
26. Cell-Free Massive MIMO ... 49
 26.1. Motivation ... 49
 26.2. Previous Research ... 49
 26.4. Future Vision .. 50
27. Systems Design ... 51
28. Regulatory & Compliance ... 52
29. Safety ... 54
30. Use Cases ... 55
31. External Opportunities .. 56
32. Conclusions and Recommendations ... 57
 32.1. Summary of Conclusions ... 57
 32.2. Working Group Recommendations ... 57
33. References .. 58
34. Contributor Bios .. 61
35. Acronyms / Abbreviations .. 65
Figures

Figure 1. Massive MIMO Ecosystem .. 4
Figure 2. Massive MIMO Array: Spatial Multiplexing Mode ... 32
Figure 3. Massive MIMO Array: Beamforming Mode ... 32
Figure 4. Constellation Shaping ... 32
Figure 5. Different Types of RIS: (a) IRS; (b) RRS; and (c) IOS .. 36
Figure 6. 3D Transparent View of RIS-Assisted mmWave Communication with Realistic Environment and Human Blockage .. 38
Figure 7. Holographic Pattern Construction .. 43
Figure 8. RHS-Aided Multi-User Communication System ... 43
Figure 9. Illustrations of Massive MIMO for Non-Terrestrial and Deep-Space Networks[42] 47
Figure 10. SCADN Framework that Monitors Space and Detects and Intercepts the Hazardous Space Objects[49] 48

Tables

Table 1: Comparison of MU-MMIMO with SU-MMIMO .. 34
Table 2: Beamforming vs. Spatial Multiplexing .. 34
Table 3: Comparison of QPSK with SU-MMIMO and M-ary with MU-MMIMO 35
ABSTRACT

The use of a large number of antenna elements, known as Massive MIMO, is seen as a key enabling technology in the 5G and Beyond wireless ecosystem. The intelligent use of a multitude of antenna elements unleashes unprecedented flexibility and control on the physical channel of the wireless medium. Through Massive MIMO and other techniques, it is envisioned that the 5G and beyond wireless system will be able to support high throughput, high reliability (low bit-error-rate (BER)), high energy efficiency, low latency, and an internet-scale number of connected devices.

Massive MIMO and related technologies will be deployed in the mid-band (sub 6 GHz) for coverage, all the way to mmWave bands to support large channel bandwidths. It is envisioned that Massive MIMO will be deployed in different environments: Frequency Division Duplex (FDD), (Time Division Duplex (TDD), indoor / outdoor, small cell, macro cell, and other heterogeneous networks (HetNet) configurations. Accurate and useful channel estimation remains a challenge in the efficient adoption of Massive MIMO techniques, and different performance-complexity tradeoffs may be supported by different Massive MIMO architectures such as digital, analog, and/or digital / analog hybrid. Carrier frequency offset (CFO), which arises due to the relative motion between the transmitter and receiver, is another important topic. Recently, maximum likelihood (ML) methods of CFO estimation have been proposed, that achieve very low root mean square (RMS) estimation errors, with a large scope for parallel processing and well suited for application with turbo codes.

Massive MIMO opens up a whole new dimension of parameters where the wireless applications or other network layers may control or influence the operation and performance of the physical wireless channel. To fully reap the benefits of such flexibility, the latest advances in artificial intelligence (AI) and machine learning (ML) techniques will be leveraged to monitor and optimize the Massive MIMO sub-system. As such, a cross-layer open interface can facilitate exposing the programmability of Massive MIMO through techniques such as network slicing (NS) and network function virtualization (NFV). Finally, security needs to be integrated into the design of the system so the new functionality and performance of Massive MIMO can be utilized in a reliable manner.

Key words:
5G, Massive MIMO, beamforming, mmWave, HetNet, energy efficiency, channel estimation, CFO estimation, hybrid architecture, beam optimization, average signal-to-noise ratio per bit.
CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haijian Sun</td>
<td>Department of Computer Science, University of Wisconsin, Whitewater</td>
</tr>
<tr>
<td>Chris Ng</td>
<td>IEEE Future Networks Massive MIMO Working Group</td>
</tr>
<tr>
<td>Yiming Hu</td>
<td>University of Victoria</td>
</tr>
<tr>
<td>Rose Qingyang Hu</td>
<td>Utah State University</td>
</tr>
<tr>
<td>Ning Wang</td>
<td>Zhengzhou University</td>
</tr>
<tr>
<td>Chi-Ming Chen</td>
<td>AT&T, IEEE</td>
</tr>
<tr>
<td>Kasturi Vasudevan</td>
<td>IIT KANPUR</td>
</tr>
<tr>
<td>Jin Yang</td>
<td>Verizon Communications Inc.</td>
</tr>
<tr>
<td>Webert Montlouis</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>Dauda Ayanda</td>
<td>University of KwaZulu-Natal, South Africa</td>
</tr>
<tr>
<td>Kumar Vijay Mishra</td>
<td>United States CCDC Army Research Laboratory</td>
</tr>
<tr>
<td>Kürşat Tekbıyık</td>
<td>Department of Electronics and Communication Engineering</td>
</tr>
<tr>
<td></td>
<td>Istanbul Technical University</td>
</tr>
<tr>
<td>Nasir Hussain</td>
<td>Samsung Electronics America</td>
</tr>
<tr>
<td>Harish Kumar Sahoo</td>
<td>Veer Surendra Sai University of Technology, India</td>
</tr>
<tr>
<td>Yang Miao</td>
<td>University of Twente, The Netherlands</td>
</tr>
<tr>
<td>Boya Di</td>
<td>Peking University</td>
</tr>
<tr>
<td>Hongliang Zhang</td>
<td>Peking University</td>
</tr>
<tr>
<td>Özlem Tugfe Demir</td>
<td>TOBB University of Economics and Technology</td>
</tr>
</tbody>
</table>
Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

Step 1. [Click here to join Future Networks](#) (free for any sponsoring IEEE Society member, and low-cost for non-members)

Step 2. Return to the [INGR page](#) to download full chapters.

14 chapters available!