The full chapter is available exclusively to signed-in participants of the IEEE Future Networks Community.

Click here to join the Future Networks Technical Community (free for any sponsoring IEEE Society member, and low-cost for non-members), then return to the INGR page to download full chapters.

Would you like to join an INGR Working Group?

Click here for contact information for each group.

Interested in booking a private session with INGR experts for your company? Contact an IEEE Account Manager to discuss an INGR Roadmap Virtual Private Event.

+1 800 701 4333 (USA/Canada)
+1 732 981 0060 (worldwide)

onalinesupport@ieee.org
IEEE INGR
International Network Generations Roadmap
2023 Edition

Optics

An IEEE Future Networks Technology Roadmap
futurenetworks.ieee.org/roadmap
Table of Contents

1. Introduction .. 1
2. Working Group Vision .. 2
 2.1. Scope of Working Group Effort ... 3
2.2. Linkages and Stakeholders .. 4
 2.2.1. Stakeholders ... 4
 2.2.2. Key Supporting Ecosystems ... 4
 2.2.3. Linkages to INGR Content .. 5
3. Today’s Landscape .. 6
 3.1. Current State of Technology and Research ... 6
 3.2. Drivers and Technology Targets .. 7
4. Future State (2033) .. 8
5. Needs, Challenges, and Enablers and Potential Solutions .. 9
 5.1. Summary .. 9
5.2. Optical XHaul Networks .. 10
 5.2.1. Current State .. 10
 5.2.2. Challenges .. 11
 5.2.1. Packet, Synchronization, PON, and Wireless Technologies in XHaul 12
 5.2.2. Potential Solutions ... 13
 5.2.2.1. Digital Optical XHaul Transceivers .. 14
 5.2.2.2. Class C and D Routers with Improved Boundary Clocks 14
 5.3. High Speed Optical Access Networks ... 14
 5.3.1. Challenges ... 14
 5.3.2. Potential Solutions ... 16
 5.3.2.1. Cooperative Dynamic Bandwidth Allocation ... 17
 5.3.2.2. Virtualization and Slicing .. 17
 5.3.2.3. Advanced Modulation Format .. 17
 5.4. Co-Packaged Optics and Data Center Networks .. 18
 5.4.1. Challenges .. 18
 5.4.1. Data Center Interconnect ... 19
 5.4.2. Co-Packaged Optics .. 19
 5.4.3. Potential Solutions ... 20
 5.4.3.1. Optical Switching ... 21
 5.4.3.2. Data Center Disaggregation .. 21
 5.4.3.3. Data Center Interconnect ... 22
 5.4.3.4. Space Division Multiplexing ... 22
 5.4.3.5. Co-Packaged Optics .. 22
 5.5. Machine Learning in Optical Networks ... 23
 5.5.1. Challenges .. 23
 5.5.2. Potential Solutions ... 25
 5.6. In-Building Optical Networks .. 26
 5.6.1. Challenges .. 26
 5.6.2. Potential Solutions ... 28
 5.7. Optical Wireless Technologies for Space Communications Using Satellites or High-Flying Platforms .. 29
 5.7.1. Challenges .. 29
 5.7.2. Potential Solutions ... 31
5.8. Optical Fibers and Spatial Division Multiplexed Networks ... 34
 5.8.1. Challenges ... 34
 5.8.2. Potential Future Directions ... 35
5.9. Quantum Communications .. 38
 5.9.1. Challenges .. 38
 5.9.2. Potential Solutions ... 38
6. Use Cases .. 40
7. External Opportunities .. 41
8. Standardization Landscape and Vision .. 42
9. Conclusions and Recommendations .. 43
 9.1. Summary of Conclusions .. 43
 9.2. Working Group Recommendations ... 43
 9.2.1. Future Work ... 43
10. Contributor Bios ... 44
11. References .. 48
12. Acronyms / Abbreviations .. 49

Tables
Table 1. Overall Needs .. 9
Table 2. Challenges Associated with Optical XHaul Networks ... 11
Table 3. Challenges Associated with Packet, Synchronization, PON, and Wireless Technologies in Xhaul .. 13
Table 4. Potential Solutions for Optical XHaul Networks ... 14
Table 5. Challenges Associated with High-Speed Optical Access Networks 16
Table 6. Potential Solutions in High-Speed Optical Access Networks ... 16
Table 7. Challenges Associated with Co-Packaged Optics and Data Center Networks 20
Table 8. Potential Solutions for Co-Packaged Optics and Data Center Networks 20
Table 9. Summary of Target Specifications for Co-Packaged Optics and Electronics in DC Applications ... 22
Table 10. Challenges for Machine Learning in Optical Networks ... 24
Table 11. Potential Solutions for Machine Learning in Optical Networks 25
Table 12. Challenges Associated with In-Building Optical Networks ... 28
Table 13. Potential Solutions for In-Building Optical Networks ... 29
Table 14. Challenges Associated with Optical Wireless Technologies for Space Communications Using Satellites or High-Flying Platforms .. 31
Table 15. Potential Solutions for Optical Wireless Technologies for Space Communications Using Satellites or High-Flying Platforms .. 34
Table 17. Key Applications that Benefit from Development of SDM ... 36
Table 18. Implementations of SDM: Single Core Fibers with Smaller Cladding and Coating Diameters, Multi-Core Fibers, and Few-Mode Fibers ... 36
Table 20. Challenges for Quantum Communications ... 38
Table 21. Potential Solutions for Quantum Communications ... 39

IEEE INTERNATIONAL NETWORK GENERATIONS ROADMAP – 2023 EDITION
OPTICS
Figures

Figure 1. Vision of Future Optical Communication Networks .. 3
Figure 2. Different Types of Optical Networks .. 3
Figure 3. Today’s Optical Networking Landscape .. 6
Figure 4. XHaul Network; Processing Functions Below Corresponding Node Types Where Executed 10
Figure 5. PON Technology Evolution and Standard Trends ... 15
Figure 6. Future Optical Access Network ... 16
Figure 7. Hierarchical DC Network Architecture .. 18
Figure 8. Integrated Photonics Transceiver Chiplets CoPackaged with ASIC Switch in Multi-Chip Module 19
Figure 9. DC Network Architecture with Merged Core / Aggregation Tier Based on Optical Switching 21
Figure 10. Network Automation in a KDN-Based Optical Network ... 23
Figure 11. Envisioned In-Building Network Architecture for 6G .. 27
ABSTRACT

Optical networks have long played a central role in telecommunication networks, forming the fiber backbone of the internet. Over time, fiber optic systems have evolved and found deployment increasingly closer to the network edge. Today, optical systems extend to the server network interface cards and home access networks. New application areas have emerged, such as the use of free space communications using LiFi technologies, space communication networks between satellites, and ground stations. Looking ahead, optical systems in many areas will continue to be driven by the need for higher speeds and capacity to keep up with traffic demands. In addition to faster interface speeds, parallel fibers or spatial division multiplexing will be used for future capacity growth. In several application areas, new functionality is expected, such as low latency in XHaul networks and optical switching and co-packaged optics in data centers. LiFi will become critical for mitigating RF interference for in-building networks. Intense research is underway to develop quantum networks to connect quantum computers. This general trend toward new functionalities for optical systems, moving beyond capacity growth in fiber networks, is driven in large part by the increasing performance and demands of today’s user equipment and applications. From the network edge to the data centers, components are reliant on optics. However, many of these developments are occurring quite independently and this situation carries the risk of creating problems down the road when eventually all of these components need to be seamlessly connected to maximize efficiency. Therefore, integration of optics into these new applications and the higher levels of functionality demanded of optics motivate the use of roadmaps to guide research and development to overcome future roadblocks.

Key words:
Optical networks, Xhaul, LiFi, space communications, wavelength division multiplexing, spatial division multiplexing, quantum networks, data center interconnect, data center networks, front-haul, back-haul, co-packaged optics.
CONTRIBUTORS

Dan Kilper (Co-Chair) | CONNECT, Trinity College Dublin, Ireland
Jun Shan Wey (Co-Chair) | Verizon Communications, USA
Tom Hausken | OSA
Ampalavanapillai Nirmalathas | University of Melbourne, Australia
Reza Vaez-Ghaemi | Viavis Solutions
HwanSeok Chung | ETRI, S Korea
Prakash Ramchandran | Cloud24x7
Volker Jungnickel | HHI Germany
Murat Yuksel | University of Central Florida, USA
Surgey Ten | Corning, USA
Rudra Dutta | North Carolina State University, USA
Paolo Monti | Chalmers University of Technology, Sweden
Lena Wosinska | Chalmers University of Technology, Sweden
Peter Andrekson | Chalmers University of Technology, Sweden
Suresh Subramaniam | George Washington University, USA
Ahsutosh Dutta | Applied Physics Laboratory, John Hopkins University, USA
KRS Murthy | i3 World, USA
Zuqing Zhu | University of Science and Technology of China, China
Chathurika Ranaweera | Deakin University, Australia
Brad Kloza | IEEE Future Networks Initiative
Matthew Borst | IEEE Future Networks Initiative

Other Working Group Members
Haydar Çukurtepe (TED University, Turkey)
Rentao Gu (Beijing University of Post and Telecommunications, China)
Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

Step 1. Click here to join Future Networks (free for any sponsoring IEEE Society member, and low-cost for non-members)

Step 2. Return to the INGR page to download full chapters.