This file is a free sample of this chapter.

The full chapter is available exclusively to signed-in participants of the IEEE Future Networks Community.

Click here to join the Future Networks Technical Community (free for any sponsoring IEEE Society member, and low-cost for non-members), then return to the INGR page to download full chapters.

Would you like to join an INGR Working Group? Click here for contact information for each group.

Interested in booking a private session with INGR experts for your company? Contact an IEEE Account Manager to discuss an INGR Roadmap Virtual Private Event.

+1 800 701 4333 (USA/Canada)
+1 732 981 0060 (worldwide)

onlinesupport@ieee.org
Wi-Fi® and Wi-Fi Alliance® are registered trademarks of Wi-Fi Alliance.

The IEEE emblem is a trademark owned by the IEEE.

“IEEE™, the IEEE logo, and other IEEE logos and titles (IEEE 802.11™, IEEE P1785™, IEEE P287™, IEEE P1770™, IEEE P149™, IEEE 1720™, etc.) are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated. All other products, company names or other marks appearing on these sites are the trademarks of their respective owners. Nothing contained in these sites should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademark displayed on these sites without prior written permission of IEEE or other trademark owners.

Copyright © 2023
Table of Contents

1. Introduction .. 13
 1.1. 2023 Edition Update ... 13
2. Working Group Vision ... 15
 2.1. Scope of Working Group Effort ... 19
 2.2. Linkages and Stakeholders .. 19
3. Today’s Landscape ... 21
 3.1. Current State of Technology and Research .. 21
 3.2. Drivers and Technology Targets ... 22
 3.3. Satellite 5G Deployment Challenges from the Market Standpoint 23
 3.3.0. LEO Expansion ... 23
 3.3.1. Connectivity Technical Innovation ... 23
 3.3.2. Direct Services to the User Device .. 24
 3.3.3. HAPS ... 24
 3.3.4. Concerns — Space Congestion .. 24
 3.3.5. Satellite Industry Consolidation ... 25
 3.3.6. The Unconnected ... 25
 3.3.7. Chinese Satellite Market ... 25
 3.3.8. Various Headlines of March 2023 ... 25
4. Future State (2033) ... 27
 4.1. Vision of Future Technology .. 27
 4.2. Architectural Framework and Reference Architecture ... 29
 4.2.1. Non-Terrestrial Elements Considered ... 30
 4.2.2. Reference Architectures ... 31
5. Needs, Challenges, Enablers, and Potential Solutions ... 37
 5.1. Summary ... 37
 5.2. Applications and Scenarios .. 37
 5.2.1. Challenges .. 37
 5.2.2. Potential Solutions ... 38
 5.3. Architecture .. 39
 5.3.1. Architecture for 6G-Satellite Integration ... 39
 5.3.2. Architecture for LEO Satellite-based Internet of Things 41
6. Novel PHY Layer Options for Satellite Networks .. 42
 5.4.1. Introduction .. 42
 5.4.2. mmWave PHY .. 42
 5.4.3. Optical Wireless Communications over Non-Terrestrial Networks 51
5.5. Antennas & Payload .. 57
 5.5.1. Challenges .. 58
 5.5.2. Potential Solutions .. 60
6. Machine Learning and Artificial Intelligence ... 61
 5.6.1. Challenges ... 61
 5.6.2. Potential Solutions .. 65
5.7. Edge Computing .. 68
 5.7.1. Challenges ... 68
 5.7.2. Potential Solutions .. 72
5.8. Quality of Service / Quality of Experience (QoS / QoE) ... 73
 5.8.1. Challenges ... 73
 5.8.2. Potential Solutions ... 79
5.9. Security ... 82
 5.9.1. Challenges ... 82
 5.9.2. Potential Solutions ... 90
5.10. Satellite Network Management ... 91
 5.10.1. Mobility Management in Satellite Networks ... 91
 5.10.2. Mobility Management in Satellite Networks — Need #1 92
 5.10.3. Mobility Management in Satellite Networks — Need #2 93
 5.10.4. Mobility Management in Satellite Networks — Need #3 94
 5.10.5. Mobility Management in Satellite Networks — Need #4 96
 5.10.6. Mobility Management in Satellite Networks — Need #5 98
 5.10.7. Radio Resource Management in Satellite Networks .. 99
 5.10.9. Radio Resource Management in Satellite Networks — Need #2 102
 5.10.10. Radio Resource Management in Satellite Networks — Need #3 104
 5.10.11. Routing in Satellite Networks ... 105
 5.10.12. Routing in Satellite Networks — Need #1 ... 105
 5.10.13. Routing in Satellite Networks — Need #2 ... 106
 5.10.15. Network Function Virtualization in Satellite Networks — Need #1 108
 5.10.16. Network Slicing in Satellite Networks — Need #2 .. 109
 5.10.17. Software-Defined Satellite Networks — Need #3 ... 110
5.11. Standardization .. 112
 5.11.1. Needs .. 112
 5.11.2. Challenges ... 113
 5.11.3. Potential Solutions ... 114
6. Use Cases ... 115
 6.1. Use Cases for Satellite Networks as Backhaul for 6G Terrestrial Networks 115
 6.1.1. Use Case-1: DU to CU Bent Pipe / 1-Hop Relay over LEO Satellites 115
 6.1.2. Use Case-2: DU to CU over Multi-Hop LEO Non-Federated Networks 116
 6.1.3. Use Case-3: DU to CU over Multi-Hop Federated Networks 116
 6.1.4. Use Case-4: Bent Pipe / 1-Hop Relay to DU to Gateway 117
 6.1.5. Use Case-5: DU to Gateway Backhaul over Multi-Hop LEO Non-Federated Networks ... 118
 6.1.6. Use Case-6: DU to Gateway Backhaul over Multi-Hop Federated LEO Networks ... 118
 6.1.7. Use Case-7: Terrestrial SBS to LEO Bent-Pipe / 1-Hop Relay To eNodeB / gNodeB .. 119
 6.1.8. Use Case-8: Terrestrial SBS to eNodeB / gNodeB over LEO Multi-Hop Non-Federated Networks .. 119
 6.1.9. Use Case-9: Terrestrial SBS to eNodeB / gNodeB over LEO Multi-Hop Federated LEO Systems .. 120
 6.1.10. Use Case-10: UAVs as Bent Pipe / Single-Hop Relay 120
 6.1.11. Use Case-11: UAV Multi-Hop Back-Haul .. 121
 6.2. Use Cases with Direct Access Satellite Networks ... 123
 6.2.1. Direct Access Use Case-1.a: UE to LAP → gNodeB .. 123
 6.2.2. Direct Access Use Case-1.b: UE to LAP → LAP → gNodeB 124
 6.2.3. Direct Access Use Case-1.c: UE to LAP → HAP → gNodeB 125
Tables

Table 1. Verticals and Drivers ... 15
Table 2. Topics and Descriptions ... 19
Table 3. Current and Planned Non-GSO Systems[7] with Updates by Authors ... 21
Table 4. KPIs .. 28
Table 5. Challenges Architectural Framework ... 29
Table 6. NTN Elements and Altitude Range ... 30
Table 7. Interface Equivalence: this Satellite Roadmap vs. 3GPP 38.821 Rel. 16 for 5G Satellite Integration 33
Table 8. Challenges Associated with Applications and Scenarios 38
Table 9. Solutions Associated with Applications and Scenarios 38
Table 10. Overall Needs ... 39
Table 11. Challenges Associated with Architecture for 5G-Satellite Integration ... 39
Table 12. Potential Solutions to Address Architecture for 5G Satellite Integration ... 40
Table 13. Challenges Associated with Satellite IoT 41
Table 14. Potential Solutions to Address Satellite IoT 41
Table 15. Uplink, Downlink, and Available Spectrum for the mmWave through Satellite (per ITU-R Regulations) 43
Table 16. Challenges Associated with Capacity 48
Table 17. Potential Solutions to Address Capacity 49
Table 18. Challenges Associated with Optical Wireless Communications for Capacity, Resilience, and Security 55
Table 19. Potential Solutions to Address Optical Wireless Links for Capacity, Resilience, and Security 56
Table 20. Current and Future Antenna Technologies 58
Table 21. Challenges Associated with Security 60
Table 22. Potential Solutions for Capacity Needs 60
Table 23. Potential Solutions Associated with Robustness 61
Table 24. Potential Solutions to Address Security 61
Table 25. Challenges Associated with All Needs 64
Table 26. Potential Solutions to Address Need #1 65
Table 27. Potential Solutions to Address Need #2 66
Table 28. Potential Solutions to Address Need #3 66
Table 29. Potential Solutions to Address Need #4 67
Table 30. Potential Solutions to Address Need #5 67
Table 31. Challenges Associated with MEC .. 71
Table 32. Potential Solutions to Address MEC .. 72
Table 33. UE to Satellite Propagation Delay ... 75
Table 34. QoS Requirements for Satellite Access 76
Table 35. Challenges Associated with QoS / QoE 78
Table 36. Potential Solutions to Address QoS / QoE 79
Table 37. Challenges and Solutions to Address the Needs Related to Security ... 90
Table 38. Challenges Associated with Support Satellite Location Management .. 92
Table 39. Potential Solutions to Address Support Satellite Location Management .. 93
Table 40. Challenges Associated with Support for Seamless Handovers ... 93
Table 41. Potential Solutions to Address Support for Seamless Handover ... 94
Table 42. Challenges Associated with Support for Alternative Handover Triggers .. 95
Table 43. Potential Solutions to Address Support for Alternative Handover Triggers .. 96
Table 44. Challenges Associated with Support for Terminal Handover ... 96

IEEE INTERNATIONAL NETWORK GENERATIONS ROADMAP – 2023 EDITION
SATELLITE
Table 48. Potential Solutions to Address Support for Terminal Handover .. 97
Table 49. Challenges Associated with Support Group of Terminals Handover ... 98
Table 50. Potential Solutions to Address Support Group of Terminals Handover ... 99
Table 51. Challenges Associated with Optimized Resource Allocation .. 100
Table 52. Potential Solutions to Address Optimized Resource Allocation ... 102
Table 53. Challenges Associated with Efficient Support of IoT Applications ... 103
Table 54. Potential Solutions to Address Efficient Support of IoT Applications ... 103
Table 55. Challenges Associated with Efficient Interference Management and Spectrum Utilization 104
Table 56. Potential Solutions to Address Efficient Interference Management and Spectrum Utilization 105
Table 57. Challenges Associated with On-Board Processing .. 105
Table 58. Potential Solutions to Address On-Board Processing Challenges .. 106
Table 59. Challenges Associated with Routing Protocols ... 107
Table 60. Potential Solutions to Address Routing Protocols Challenges .. 107
Table 61. Challenges Associated with Network Function Virtualization .. 108
Table 62. Potential Solutions to Address Network Function Virtualization ... 109
Table 63. Challenges Associated with Network Slicing .. 109
Table 64. Potential Solutions to Address Network Slicing .. 110
Table 65. Challenges Associated with Software-Defined Satellite Networks .. 110
Table 66. Potential Solutions to Address Software-Defined Satellite Networks .. 112
Table 67. Needs for Standardization ... 112
Table 68. Challenges Associated with Standardization Needs .. 113
Table 69. Potential Solutions to Address Standardization Needs .. 114
Table 70. Satellite-IoT Physical Layer Reference Scenarios .. 140
Table 71. Reference Parameters for Satellite-IoT Physical Layer Scenarios .. 140
Table 72. Application / Use-Case for Satellite IoT .. 141
Table 73. List of Acronyms .. 172
Table 74. Radio Frequency Band Definitions (as Used by the Satellite Community) 179
Table 75. 3GPP TR Documents on SATCOM[83] .. 182

Figures

Figure 1. Communications Application Domains Typically Addressed by Satellite Networks 17
Figure 2. Modern Wireless Use Cases .. 18
Figure 3. Map of Cross-Team Meetings Showing Working Group Interactions ... 20
Figure 4. 6G Key Performance Indicators (KPIs)[12] .. 28
Figure 5. Ericsson Mobility Report: Mobile Data Traffic Outlook[13] .. 29
Figure 6. Non-Terrestrial Network Elements Considered in this Report ... 30
Figure 7. Representation of Use Cases Addressed in the Following Subsections .. 31
Figure 8. Reference Architecture-1: Non-Virtualized 5G Satellite Networks .. 34
Figure 9. Different Depiction of Reference Architecture-1 .. 34
Figure 10. Reference Architecture-2 .. 35
Figure 11. Reference Architecture-3 .. 36
Figure 12. Attenuation in dB/km of the Atmospheric Gasses ... 43
Figure 13. Rain Attenuation in dB/km Across Frequency for the Rainfall Rates of 2.5 mm/h 44
Figure 14. Classification of ML Applications for Non-Terrestrial Networks ... 63
Figure 15. The Four View Points of QoS (ITU-T G.1000) ... 74
Figure 61. Direct Access Use Case-3.f ... 138
Figure 62. Direct Access Use Case-3.g for the Non-Federated Case ... 139
Figure 63. Direct Access Use Case-3.g for the Federated Case ... 139
Figure 64. Physical Layer Reference Scenario A (Direct Access, Transparent Payload) 141
Figure 65. Physical Layer Reference Scenario B (Direct Access, Regenerative Payload) 142
Figure 66. Physical Layer Reference Scenario E (Indirect Access, Terrestrial Gateway, Transparent Payload) 142
Figure 67. Physical Layer Reference Scenario F (Indirect Access, with HAPS, Transparent Payload) 143
Figure 68. Use of 5G LEO Satellites and Cloud Service .. 181
Figure 69. Evolution of 3GPP Standardization in Releases[B2] .. 182
Figure 70. Release 18 Schedule ... 185
ABSTRACT
The fifth generation (5G) wireless communication systems development has brought about a paradigm shift using advanced technologies; including softwarization, virtualization, massive MIMO, and ultra-densification, in addition to introducing new frequency bands. However, as societal needs for any form of information grow, it is necessary to satisfy the UN’s Sustainable Development Goals (SDGs). Migrations to 6G and beyond systems are envisioned to provide augmented capacity, so massive IoT, with better performance relying on optimization made possible by artificial intelligence, it is absolutely necessary. Non-Terrestrial Networks (NTNs), including satellite systems, High-Altitude Platforms (HAPs), and Unmanned Aerial Vehicles (UAVs), provide the best solutions to connect the unconnected, unserved, and underserved in remote and rural areas.

Over the past few decades, Geo Synchronous Orbits (GSO) satellite systems have been deployed to support broadband services, backhauling, Disaster Recovery and Continuity of Operations (DR-COOP), and emergency services. Recently, novel non-GSO satellite systems are attracting significant interest. Within the next few years, several thousands of Low Earth Orbit (LEO) satellites and mega-LEO constellations will provide global internet services, offering user throughput comparable to terrestrial mobile or fixed access networks.

This report represents the 2023 Edition of the INGR Satellite Working Group Report, following the previous three editions. This edition of the INGR Satellite Working Group Report addresses NTN and 6G more in detail, adding further contributions on optical wireless communications, artificial intelligence techniques, seamless handover, security, and recent standardization efforts given the prospected unification of terrestrial and NTN components of 6G.

Key words
Satellite Communications, Satellite Networks, Waveforms, MIMO, mmWave, OFDM, QoS, QoE, Security, Network Architecture, LEO, MEO, GEO, HAP, UAV, MEC, AI/ML, IoT, Artificial Intelligence (AI), Machine Learning (ML)
CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sastri Kota (Chair)</td>
<td>SoHum Consultants, USA, and University of Oulu, Finland</td>
</tr>
<tr>
<td>Giovanni Giambene (co-Chair)</td>
<td>University of Siena, Italy</td>
</tr>
<tr>
<td>Mohammed Abdelsadek</td>
<td>Carleton University, Canada</td>
</tr>
<tr>
<td>Mohamed-Slim Alouini</td>
<td>KAUST, Kingdom of Saudi Arabia</td>
</tr>
<tr>
<td>Marc Amay</td>
<td>CTTC, Spain</td>
</tr>
<tr>
<td>Sarath Babu</td>
<td>Iowa State University, USA</td>
</tr>
<tr>
<td>Joan Bas</td>
<td>CTTC, Spain</td>
</tr>
<tr>
<td>Pietro Cassarà</td>
<td>ISTI, Area della Ricerca CNR, Italy</td>
</tr>
<tr>
<td>Sachin Chaudhari</td>
<td>International Institute of Information Technology Hyderabad (IIITH), India</td>
</tr>
<tr>
<td>Debabrata Dalai</td>
<td>Indian Institute of Space Science and Technology, India</td>
</tr>
<tr>
<td>Tasneem Darwish</td>
<td>Carleton University, Canada</td>
</tr>
<tr>
<td>Tomaso de Cola</td>
<td>DLR, Germany</td>
</tr>
<tr>
<td>Thomas Delamotte</td>
<td>Bundeswehr University Munich, Germany</td>
</tr>
<tr>
<td>Ashutosh Dutta</td>
<td>Johns Hopkins University Applied Physics Lab, USA</td>
</tr>
<tr>
<td>Ayush Dwivedi</td>
<td>International Institute of Information Technology Hyderabad (IIITH), India</td>
</tr>
<tr>
<td>Michael Enright</td>
<td>Quantum Dimension, USA</td>
</tr>
<tr>
<td>Marco Giordani</td>
<td>University of Padova, Italy</td>
</tr>
<tr>
<td>Alberto Gotta</td>
<td>ISTI-CNR, Pisa, Italy</td>
</tr>
<tr>
<td>Eman Hammad</td>
<td>Texas A&M University, USA</td>
</tr>
<tr>
<td>Tamer Khattab</td>
<td>Qatar University, Qatar</td>
</tr>
<tr>
<td>Andreas Knopp</td>
<td>Bundeswehr University Munich, Germany</td>
</tr>
<tr>
<td>Gunes Karabulut Kurt</td>
<td>Polytechnique Montréal, Montréal, Canada</td>
</tr>
<tr>
<td>Pablo G. Madoery</td>
<td>Carleton University, Canada</td>
</tr>
</tbody>
</table>
B. S. Manoj | Indian Institute of Space Science and Technology, India
Jean-Daniel Medjo Me Biomo | Carleton University, Canada
Prashant Pillai | University of Wolverhampton, UK
Pramud Rawat | Consultant, USA
Paresh Saxena | BITS Pilani, Hyderabad Campus, India
Pat Scanlan | Scanlanavia.com, Ireland
Avinash Sharma | Johns Hopkins University, USA
Muhammad Sohaib Solaija | Istanbul Medipol University, Türkiye
Ray Sperber | Consultant, Luxembourg
Zhili Sun | University of Surrey, UK
Daniele Tarchi | University of Bologna, Italy
Neeraj Varshney | National Institute of Standards and Technology (NIST), USA
Seema Verma | School of Aviation, Banasthali Vidyapith, Rajasthan, India
Simon Watts | Avanti Communications, UK
Halim Yanikomeroglu | Carleton University, Canada
Kanglian Zhao | Nanjing University, China
Liang Zhao | Shenyang Aerospace University, China

Acknowledgment
Carleton University’s contributions have been supported in part by MDA, Canada, in part by Mitacs, Canada, and in part by the National Research Council Canada’s (NRC) High Throughput Secure Networks program (CSTIP Grants #CH-HTSN-607 and #CH-HTSN-608) within the Optical Satellite Communications Canada (OSC) framework.
Centre Tecnològic Telecomunicacions de Catalunya (CTTC)’s contributions have been supported in part by the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (MCIN / AEI / 10.13039 / 501100011033) through the R+D+i Project under Grant PID2020-115323RB-C32 and Grant PID2020-115323RB-C31; by the Catalan government through the project SGR-Cat 2021-01207, and by the Centre Tecnològic de Telecomunicacions de Catalunya Researchers through the Grant from the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union Next Generation EU under Grant UNICO-5G I+D / AROMA3D-Hybrid TSI-063000 2021-71.
Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

Step 1. Click here to join Future Networks (free for any sponsoring IEEE Society member, and low-cost for non-members)

Step 2. Return to the INGR page to download full chapters.

14 chapters available!