Table of Contents

1. Introduction ...1
 1.1. 2023 Edition Update ..2
2. Working Group Vision ..3
 2.1. Scope of Working Group Effort ..3
 2.2. Linkages and Stakeholders ..3
 2.2.1. Internal Stakeholders ...3
 2.2.2. Cross-WG Synergies ..4
 2.2.3. External Stakeholders ...4
3. Today’s Landscape ...6
 3.1. Current State of Technology and Research ..6
 3.2. Drivers and Technology Targets ...6
 3.2.1. Service Variance ..6
 3.2.2. Traffic Variance ..7
 3.2.3. Control Variance ..7
4. Future State (2033) ..8
 4.1. Vision of Future Technology ...8
 4.2. Architectural Framework ...9
 4.2.1. Systems Optimization for the 5G Era and Beyond ..9
 4.2.2. Key Relationships and Interfaces ..11
 4.2.3. Evolution of Trust in the Framework ..12
5. Roadmap on Addressing Needs, Challenges, Enablers, and Potential Solutions14
 5.1. Summary ...14
 5.2. Dynamic Optimization Methods ..14
 5.2.1. Challenges and Timeline ..14
 5.2.2. Hierarchical Digital Twin Analytics ...15
 5.2.3. Adaptive / Evolving AI/ML ..16
 5.2.4. Operational Support of AI/ML Deployment ...16
 5.3. Interfaces for Peering and Resource Negotiation / Allocation17
 5.3.1. Challenges ..17
 5.3.2. Developments in Intent Modeling / APIs and AI/ML Models18
 5.3.3. Meta-models for Flexible Peer Interaction ..18
 5.4. Support of Federation Across Domains ..19
 5.4.1. Challenges ..19
 5.4.1. Knowledge Plane (KP) Federation Across Network Domains19
 5.5. Models for Fabrics of Autonomic Systems ..24
 5.5.1. Challenges ..24
 5.5.2. DEDS Modeling ...25
 5.5.3. Development of Design Principles for Disaggregated Networks25
 5.5.4. Telco Data Space Sharing ...27
 5.6. Testbeds for Systems Optimization ..29
 5.6.1. Challenges ..29
 5.6.2. Testbed Federation for 5G and Beyond ..29
Tables
Table 1: Framework Comparison .. 10
Table 2. Overall Needs ... 14
Table 3. Challenges Associated with Dynamic Optimization ... 14
Table 4: Challenges Associated with Discovery and Peering ... 17
Table 5: Challenges Associated with Federation .. 19
Table 6: Challenges Associated with Autonomic Systems .. 24
Table 7: Challenges Associated with Testbeds .. 29
Table 8. Standardization Documents .. 50
Table 9: ETSI GANA Assessment .. 77
Table 10: TM Forum Autonomous Network Initiative Assessment 80
Table 11. Autonomous Network Assets ... 81
Table 12: Description of Places and Transitions for Handoff .. 85
Table 13: Resource Consumption for Sub-Operation ... 87

Figures
Figure 1: Current State ... 6
Figure 2: Service Variance ... 6
Figure 3: Traffic Variance .. 7
Figure 4: Control Variance ... 7
Figure 5: Future State ... 8
Figure 6: SDIDA Control Loop ... 9
Figure 7: Hierarchical SDIDA Model .. 11
Figure 8: Federated SDIDA Model .. 11
Figure 9: Emergent Self-Optimizing Behavior ... 12
Figure 10. ETSI GANA Knowledge Plane (KP) Platform (Source: ETSI TR 103 747) 20
Figure 11. Federation of Autonomic Management and Control (AMC) Domains (Source: ETSI TS 103 195-2) .. 21
Figure 12. E2E Autonomic (Closed-Loop) Service Assurance (Source: ETSI TR 103 747) .. 22
Figure 13. RIC / xApps / rApps Framework for O-RAN and C-SON for Traditional RAN Case[34] ... 23
Figure 14. E2E Autonomic Security Management and Control (Source: ETSI TR 103 747 and ETSI TR 103 857) ... 24
Figure 15. Example of Disaggregated RAN Functional Entities and Interfaces 35
Figure 16. Distributed Optimization Options with RAN Intelligent Controllers 37
Figure 17: TM Forum IG1218 Autonomous Networks Business Requirements and Framework v2.2.0 ... 47
Figure 18: Autonomous Networks Reference Architecture Concepts (Source: Fig 1.1 IG1251) .. 48
Figure 19: Autonomous Networks Reference Architecture Concepts (Source: Fig 4.1 IG1251) ... 49
Figure 20: Proposal on “How to Build the Blueprint (COPAAN)” 53
Figure 21: Proposal on “Call for a Project to work on Producing the COPAAN Blueprint” ... 54
Figure 22: Conceptual Model of an AN’s Key Operations-related Peripheral Interfaces 54
Figure 23: Examples of Primitives of the Conceptual Model ... 55
Figure 24: Examples of Self Organizing Systems ... 70
Figure 25: Snapshot of the GANA Reference Model (Adapted from Whitepaper no. 4[43]) .. 74
Figure 26. Generalized High-Level Timed Petri Net Model for Handoff 84
Figure 27: Hierarchical Decomposition of Petri Net-Based Handoff Model 85
ABSTRACT

Fifth generation (5G) networks are now in the early deployment stages in networks around the world. Use cases driving this transition for 5G networks focus on the need to support heterogeneous traffic such as enhanced Mobile Broadband (eMBB), massive Machine-Type Communications (mMTC), and Ultra-Reliable Low-Latency Communications (URLLC). On the software and control side, 5G and beyond networks are enabled through Software-Defined Networking (SDN) and Network Function Virtualization (NFV) technologies and leverage the merging of communication and computing.

Although not yet in the standardization stage, early thinking on 6G networks focuses on the convergence of physical, human, and digital worlds, including support for:

- digital twinning (tight synchronization between the physical world and the twin),
- immersive communication (support of pervasive haptics),
- cognition (awareness of human intentions, desires, and mood), and
- connected intelligence (trusted AI everywhere with interaction between virtual representations).

All this also needs to be realized in sustainable fashion [1].

With the deployment of novel applications and the expected increase in their usage and demand, the scope of innovation within future networks will be governed by: (a) limitations and boundaries of available resources; (b) limitations of the adaptability of legacy solutions (scalability and flexibility); (c) limitations of available decision making entities (network slice orchestrators and SDN controllers will not be enough); and (d) lack of intelligent management and control solutions for multi-variate optimization. Technologies are available for efficient use and self-adaptive optimization of resources using enablers such as AI-powered autonomic control loops. With ever-increasing complexity expected for beyond-5G networks, there is a necessity for novel design, planning and operations paradigms. There is a need for assessment of legacy tools versus new Artificial Intelligence solutions for applicability to systems optimization, and a need for introduction of novel methods to model and study the behavior of highly complex systems developed for the realization of 5G and beyond networks. The goal of this working group (WG) is to assess complexity challenges for the 5G era and beyond, explore novel design, planning and operations techniques for networks and services, and to create the Systems Optimization roadmap of the IEEE Future Networks Initiative (FNI) Systems Optimization WG.

Key words:

CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranganai Chaparadza</td>
<td>Capgemini Engineering</td>
</tr>
<tr>
<td>Abdelaali Chaoub</td>
<td>Institut National des Postes et Télécommunications (INPT)</td>
</tr>
<tr>
<td>Baw Chng</td>
<td>BAWMAN LLC</td>
</tr>
<tr>
<td>Nigel Davis</td>
<td>Ciena</td>
</tr>
<tr>
<td>Ashutosh Dutta</td>
<td>Johns Hopkins University Applied Physics Laboratory</td>
</tr>
<tr>
<td>Muslim Elkotob</td>
<td>Vodafone</td>
</tr>
<tr>
<td>Dilip Krishnaswamy</td>
<td>Quantum Walks Technologies</td>
</tr>
<tr>
<td>Kaniz Mahdi</td>
<td>Deutsche Telekom</td>
</tr>
<tr>
<td>Aarne Mämmelä</td>
<td>VTT Technical Research Centre of Finland (retired)</td>
</tr>
<tr>
<td>Pedro Martinez-Julia</td>
<td>NICT</td>
</tr>
<tr>
<td>N. Kishor Narang</td>
<td>Narnix Technolabs</td>
</tr>
<tr>
<td>Lyndon Ong</td>
<td>Ciena</td>
</tr>
<tr>
<td>Mohammad Patwary</td>
<td>Birmingham City University</td>
</tr>
<tr>
<td>Meryem Simsek</td>
<td>ICSI Berkeley</td>
</tr>
<tr>
<td>Jens Voigt</td>
<td>Amdocs</td>
</tr>
<tr>
<td>Craig Polk</td>
<td>IEEE Future Networks Technical Community</td>
</tr>
<tr>
<td>TM Forum Contributors:</td>
<td></td>
</tr>
<tr>
<td>Kevin McDonnell</td>
<td>Huawei</td>
</tr>
<tr>
<td>Jörg Niemöller</td>
<td>Ericsson</td>
</tr>
<tr>
<td>Dave Milham</td>
<td>TM Forum</td>
</tr>
<tr>
<td>James Cadman</td>
<td>TM Forum</td>
</tr>
</tbody>
</table>
Want to read the full chapter?

Accessing full INGR chapters is easy and affordable.

Step 1. [Click here to join Future Networks](#) (free for any sponsoring IEEE Society member, and low-cost for non-members)

Step 2. Return to the [INGR page](#) to download full chapters.

14 chapters available!