Wireless Network INTELLIGENCE @ the EDGE

Mehdi Bennis

Associate Professor

Head of Intelligent Connectivity and Networks/Systems

Centre for Wireless Communications

University of Oulu, Finland

5G: Evolution or Revolution?

- The evolutionary part of 5G (eMBB) has made great strides focusing primarily on the use of <u>high frequency bands</u> + <u>Numerology</u>.
 - 5G standardization has been going full steam with the 1st 5G new radio (NR) milestone for non-standalone and subsequent releases.
- Fundamentals of ultra-reliable and low-latency communication (URLLC) at the network level (catalyst of the 5G revolution) are <u>not well</u> understood.
 - 3GPP focused on <u>radio</u> instead of a E2E codesign of sensing/communication/controlling/computing/actuating
- Networks getting very complex to manage
- Emergence of new breed of devices and high-stake applications driven by Robotics & Autonomous Systems, human-machine/brain-machine interaction, multi-sensory AI, 3D Imaging [+ unforeseen applications..]

ML/Al Changing Our Lives ...@ What Cost?

Good News Today's AI successfully *recognizes faces, diagnoses diseases, predicts rainfall,* consumer preferences + much more.

- Deep NN are SOTA for ML tasks and *revolutionized* our lives
 - Thanks to more data and compute power

Modern NN architectures are compute, space and power-hungry.

 Cloud-Run: <u>Computationally intensive</u> → difficult to deploy on embedded devices with limited hardware resources + tight power budget

Centralized + Offline training

- Do not reliably quantify prediction confidence
- Easy to fool changing slightly the input (GANs) -- adversarial examples
- No privacy guarantees
- Dominant paradigm: <u>Dumb</u> devices w/ <u>always-on cloud-</u> <u>connectivity</u>

Machine translation

Face Recognition

AlphaGo M

<u>Unfit</u> for the new breed of intelligent devices & high-stake applications

Bad News

Classical Al (past)

- Cloud-Al w/ dumb devices
- All data in the cloud
- Classification/inference at the cloud
- No privacy
- Bandwidth constraints for massive data upstream

Challenges

Unsuitable for URLLC applications

Collaborative Al (future)

- Collective intelligence
- Privacy-preserving

Federated Al (near-future)

)) mobile AI= Cloud-AI + on-device AI

- How to aggregate learning from distributed agents?
- Model dynamics, etc
- Bandwidth efficient
- Continuous learning
- Use the cloud but smartly
 - Privacy-preserving

URLLC Meets Al

ML for Communication (ML4C) – Current Focus

- ML @ Physical layer
 - Accurate knowledge of RF environment (channel effect, propagation models, fault monitoring)
 - Optimized use of RF environment (improved MCS, resource scheduling, spatial encoding schemes for MU-MIMO, reduced power consumption)
 - Channel detection and decoding (data-driven useful for non well-established channel models)

 Mostly data-driven +
 - Learn how to cancel FD self-interference
- ML @ network and application layer
 - Resource slicing, caching popular contents, routing, etc.
 - Traffic classification
 - Spectrum sensing (generate new examples to augment a dataset to train a classifier)
 - Community detection

centralized + blackbox based solutions

Wireles Edge Intelligence

- Edge intelligence (EI) is a **nascent research field** which requires a **major departure** from centralized cloud-based *training/inference/control* approaches
- Towards a system design where edge devices communicate and exchange their learned models (not their private/raw data) to build a centralized trained model—subject to:
 - latency
 - reliability
 - privacy
 - Memory/compute/power constraints
 - accuracy.

ML+Wireless <u>codesign</u> needed across full stack from application through hardware + improved efficiency of NN *yielding*:

- Latency reduction via local inference
- Bandwidth efficiency
- Immediacy
- Privacy-preserving

Communication Bottleneck

5G peak rate comparable with Ethernet speed

Synchronization latency due to network connectivity, power

and computing constraints

Model Size

- Hard to <u>distribute</u> large models through OTA
- <u>Smaller model</u> improve inference speed, require less arithmetic operations and computation cycles + less memory reference cycles

Energy Efficiency

- AlphaGo: 1920 CPUs + 280 GPUs, \$3000 electric bill per game
- Running large NNs require significant memory bandwidth to fetch the weights

Statistical Challenge: Non-IID Data

- Unrealistic to assume local data on each edge device is always IID
- Non-IID training dataset degrades accuracy [Zhao18] due to weight divergence
 - Distribute small amount of globally shared data
 - Accuracy vs. centralization tradeoff

[Zhao18] Y. Zhao et al., "Federated Learning with Non-IID Data," arXiv preprint

Inference Speed

- Many applications require <u>low-latency, realtime</u> <u>inference</u> such as self-driving vehicles and AR glasses
- Very long training time limits ML researcher's productivity

ResNet18: 10.76% 2.5 days
ResNet50: 7.02% 5 days
ResNet101: 6.21% 1 week
ResNet152: 6.16% 1.5 weeks

Challenges & Requirements

Our Vision

Some Fundamental Questions

- Q1. How do resource-constrained devices *collectively train* a high-quality centralized model in a decentralized manner? for different master/slave and slave-slave architectures.
- Q2. How do learners utilize <u>correlation information</u> balancing computational complexity, communication cost and prediction accuracy? How to learn while <u>personalizing</u> to each user/task?
- Q3. How do learners address the notorious challenge of non-convexity in neural network training?
- How to enable **beyond-average**, *reliable* and *low-latency* AI?
- Q4. Can we adapt the optimization algorithms to <u>converge faster</u> with less communication rounds?
- Q5. How many communication-computing rounds are needed for a given target % accuracy?
 - Computing is cheaper than communication
- Q6. What is the impact of <u>no. of learners</u> (participating devices), <u>no. of samples</u> per leaner and no. of <u>local iterations</u>? What is the impact of <u>learning rates</u>, data sample <u>freshness/importance</u>, etc.?
- What information to be shared between nodes based on communication-delay constraints?
- Q7. How to carry out decision making under risk and uncertainty for resource-constrained devices? How to model dynamics, uncertainty (DL ignores <u>uncertainty</u>) → Bayesian DL
- + Neural architectural split & Intelligence split from device-edge-cloud

FL-Wireless Ramifications

An ML model may have million parameters

- Model updating is bandwidth consuming especially for 1000X edge devices
- Slowest node or straggler
- Lack of synchronization and asynchronous updates
- Moving nodes
- Noisy/interfered links
- Sample importance/Freshness
- Data quantity vs. quality

Artificial intelligence and machine learning in next-generation systems

Federated learning for Reliable V2V

Use case = URLLC-V2X + distributed FL Challenge: latency distribution is needed! $Pr(q_u(t) \ge q_0) \le \epsilon$ Solutions:

- <u>Locally</u> but lack of samples (latency1)
- Remotely (RSU) but violate latency constraints (reliability↑ but latency↑)
- Synchronous vs. asynchronous UL (latency1).

Key Idea.

Instead of vehicles uploading their data to the cloud/RSU, every vehicle locally uploads its model to **RSU**

→ Model-driven ML

RSU does model averaging and brodcasts/multicasts to vehicles.

Benefits.

- FL is a lower latency + Higher reliability enabler ©
- 2. Works even during connectivity loss ©

Modeling Extreme Queue Lengths Using Extreme Value Theory

$$G_M^{\boldsymbol{d}}(m) = \begin{cases} \frac{1}{\sigma} (1 + \xi m/\sigma)^{-1-1/\xi} & \text{for } \xi \neq 0, \\ \frac{1}{\sigma} e^{-m/\sigma} & \text{for } \xi = 0, \end{cases}$$

Parameter estimation via MLE

FL: Decentralized training without centralizing training data!

$$\min_{\boldsymbol{d} \in \mathcal{D}(\mathcal{Q})} \quad f^{\boldsymbol{d}}(\mathcal{Q}) = -\frac{1}{|\mathcal{Q}|} \sum_{Q \in \mathcal{Q}} \log G_X^{\boldsymbol{d}}(Q),$$

Federated learning for Reliable V2V

S. Samarakoon, et al, "Federated learning for Ultra-reliable low-latency V2V communications," in proc. of IEEE GLOBECOM 2018, Abu-dhabi, UAE.

FL: What is Next?

- Learning global model is great but not sufficient
 - Need to adapt to local dynamics → multi task FL // Transfer learning..
- Model size can quickly become the bottleneck
 - Other ideas needed (e.g. Distillation)
- Beyond Maximum Likelihood to different distances (e.g., Wasserstein)
- Often times, training data becomes outdated
 - Smart sampling of data with a cost
 - Active learning
- From federated learning to **federated control** (e.g. For drones, robots)

Many Extensions

How different data owners train their models?

- J. Park, et al. "on-device FL via Blockchain and its Latency Analysis," IEEE Comm. Letter, 2018
- "Federated Distillation and Augmentation under non IID private data," NIPS, Montreal, 2018

From data-driven <u>communication</u> to data-driven <u>control</u>

URLL"C=control" over Wireless

Parting Comments

- Distributed edge intelligence will unlock full potential of 5G (and beyond)
- LOts remain to be studied at many levels and across many domains:
 - Architectural (data split, model split)
 - Algorithmic, mathematical tools needed (Back to <u>school</u>)
 - Hardware (codesign needed)
 - → Quest for Robust & Mission-critical Al "Nowhere close to true intelligence"

Call for Collaboration

URLLC 2.0

ML/AI

World's first 6G research programme launched in Oulu, Finland

Thank You

