

Raul Muñoz, Ramon Casellas, Ricard Vilalta, Ricardo Martínez

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain.

IEEE Future networks: 5G Technology Workshop

February, 28 2019

Agenda

- The CTTC ADRENALINE Testbed
- Overview on the on-going 5G-PPP projects:
 - blueSPACE
 - Metro-haul
 - 5GTransformer
 - 5GTANGO
 - 5GCAR
 - 5GCroco
- Conclusions

ADRENALINE's end-to-end transport and cloud infrastructure

ADRENALINE's control and orchestration

CTTC ADRENALINE testbed view

THE OPTICAL PROJECTS: BLUESPACE AND METRO-HAUL

blueSPACE Optical Distribution Network

- Optical SDM introduced to the network
 - » Many parallel (independent) channels
 - » Bundles of SMF or MCF => upgrade paths
- » Shared fiber infrastructure
 - » Services (RAN, PON etc.)
 - » Operators

ARoF Fronthaul and Optical Beamforming

- » Analog radio over fiber (ARoF)
 - » Use photonics to directly generate mm-wave signals

All processing/complexity at CO

Low modulation BW in optics

Co-propagation of CW tone

Beating on photodiode produces mm-wave signal

- » Optical beamforming
 - Beamforming requires differential phase shifts between signal copies

Can be achieved in electronics or optics

Optical beamforming

Reduced power consumption

Naturally supports multi-beam transmission

Full Blass matrix can be realized

BlueSPACE SDN/NFV MANO architecture

Metro-Haul overview

- Architect and design cost-effective, energy-efficient, agile and programmable metro networks
 - Scalable for 5G access and future requirements
 - Design of all-optical metro nodes (including full compute and storage capabilities)
 - Interface with both 5G access and multi-Tbit/s elastic core networks.

Main Use Cases and demonstrations

- Video Security for Smart Cities
- Crowdsourced Video Streaming

Metro-haul Service Platform

Provide Connectivity to multiple nodes across a network

SDN Controller for the Disaggregated Optical Network

TAPI NBI

Application Logic

OpenConfig Terminal Device Drivers

OpenROADM Device Drivers

Open Source Contributions -- ONOS/ODTN – Open Disaggregated Transport Networks

https://www.opennetworking.org/solutions/odtn/

Operator-led initiative to build data center interconnects using disaggregated optical equipment, open and common standards, and open source software

THE SOFTWARE NETWORS PROJECTS: 5GTANGO AND 5GTRANSFORMER

5GTANGO Key Contributions

1

• An NFV-enabled Service Development Kit (SDK) with enriched functionalities for NS developers.

2

• A Validation and Verification (VnV) Platform with advanced mechanisms for VNFs/Network Services qualification (including 3rd party contributions).

3

• A modular Service Platform with an innovative orchestrator with control and slicing capabilities in order to bridge the gap between business needs and network operational management systems.

4

• Methodology and tools to implement a extended DevOps workflow with a multiorganizational design.

5GTANGO High Level Architecture

5GTANGO Pilots

C SMART MANUFACTURING

! IMMERSIVE MEDIA

REAL TIME COMMUNICATIONS

Deployment of real-time communications pilot in ADERNALINE

Development of Network Slicing with ETSI OpenSource MANO

Open source contribution for ETSI OpenSource MANO (OSM) release 5.

The contribution was to prepare OSM to be 5G-ready including 3GPP network slices. Novel data models and lifecycle management have been addressed.

Joint development between:

5G-TRANSFORMER: General View

- Design the 5G-T reference architecture
 - Analysis of vertical use cases and their service requirements
 - Analysis of stakeholders and ecosystem
 - Derive 5G-T system requirements
 - Provide a baseline architecture
 - Analysis of the market and economic benefits and costs of the 5G-T platform for vertical industries deployments

5G-TRANSFORMER: Architecture

To other

5GT-SOs

Architecture components

- Vertical Use cases: eHealth, Automotive, Robotics and media
- Vertical Slicer: Definition and description of the derived vertical services (i.e., VSD and NSD)

- 5GT-SO orchestrates incoming NSDs selecting and coordinating cloud and network resources
 - Executes a Placement Algorithm for selecting NFVI-PoPs clouds resources and Virtual Links (i.e., network) for intra- and inter-NFVI-PoPs connecitvity
- 5GT-MTP handles the cloud and networking resources for deploying dynamically network services
 - Single platform coordinating multi-domain and multi-tecnology resources (i.e., cloud, RAN, packet and optical)

5G-TRANFORMER: CTTC/SSSA joint collaboration 5G-TRANFORMER: CTTC/SSSA joint collaboration

- Objective: definition of on-line Cloud/Network Resource Orchestration Algorithms for deploying VNFFGs among multiple NFVI-PoPs
 - NFVI-PoPs (with different sizes) interconnected over a MLN (packet/flexi-grid optical network)

THE CONNECTED CAR PROJECTS: 5GCAR AND 5GCROCO

5GCAR Use Cases

Lane merge

High definition local map acquisition

See-through

Remote driving for automated parking

Network assisted vulnerable pedestrian protection

5G V2X System and Architecture

Network Slicing

MWCI8 Demonstration

5GCroco: 5G cross-border corridor

CTTC is the coordinator of the ICT18 project and of the Barcelona small-scale pilot.

Large-scale validation of 5G along France, Germany, and Luxembourg

Focus of the innovation

- 5G Technology features
 - Cross-border/MNO/vendor/generation Operation
 - Distributed Computing enabled by Mobile Edge Computing (MEC)
 - New Radio
 - Network Slicing
 - Predictive QoS
 - Improved Positioning
- Recommendations for Regulation and Spectrum
- Identification of new business model opportunities
- Impact on standardization (3GPP, ISO, ETSI, SAE, ...)

Conclusions

- Optical technology is key for the development of 5G fronthaul and backhaul networks.
- SDN Programmability of optical fronthaul/backhaul networks requires common data models and protocols.
- NFV Service platform are not fully integrated with SDN controllers. Need to further develop a common API.
- Network slicing is a key enabler for the verticals, but many projects are proposing proprietary solutions.
- MEC is key for the deployment of connected car, but it has to be integrated with SDN, NFV and cloud to guarantee end-to-end performance.

Raul Muñoz

Raul.munoz@cttc.es

Work supported by

European Union funding

