Optical Technique for 5G Wireless Access

Xavier Fernando
Ryerson Communications Lab
Toronto, Canada
http://www.ee.ryerson.ca/~fernando
A Major Challenge in 5G

• 5G envisions up to 10 Gb/s
• The air interface has to be very short at Gb bit rates, due to limits in basic physics (very low energy per bit)

\[E_b = \frac{\text{Transmit Power}}{\text{Baud Rate}} \]

Distance drastically drops with the bit rate - Pasquale Romano, 2Wire
Optical Techniques

• Bring the radio access points closer to the user
 – Fiber-Wireless (Radio over Fiber) systems
 – Optical feeders for distributed antennas
 – Integration with PON and, HFC networks

• Optical wireless techniques
 – Visible light communications (VLC)
 – Infrared wireless communications
 – Point to point/Distributed
 – Indoor/outdoor
Key Issues in OW

- Primarily for downlink – IOT needs more uplink
- Line of sight and short range
- Very short channel coherent time (outdoors)
- Detection issue. Optical reception is difficult than RF receivers
- High level of ambient light noise (SNR < 0)
- Intensity modulated optical signals are scalars.
 - Only the Amplitude can be changed (Unipolar) while radio signals are vectors
Multi-Systems ROF

Two (Fiber and Wireless) channels in series.
Two levels of modulation (optical and radio)
Multi system support
Ideally no signal processing at the ‘Radio Access Point (RAP)
Fi-Wi Systems also offer:

- Short air-interface - Low power transmission
- (Massive) MIMO capability
 - Multiple antennas with a good ‘inter-distance’ can be interconnected by fiber
- Wideband access
 - Low delay spread – less/no ISI (flat fading)
 - Frequent LOS path – less outage
- Coverage to special areas
 - tunnels, mines, super markets etc.
- Support mm-wave bands

\[\text{Loss} \propto \frac{1}{\lambda^2} \]
Radio over Fiber

• All of the processing that enables internet traffic to turn into radio signals happens at a central station, so ROF is much cheaper to build, run and maintain than typical wireless distribution networks. It also means that new wireless standards – such as 5G wireless, and the latest Wi-Fi protocol, 802.11ac – can replace older standards simply by changing equipment at a central point - www.newscientist.com
ROF Deployment

• China Telecom is building a 5G-oriented cloud radio access network (C-RAN) fronthaul network in the north-east Liaoning province using OTN and ROF – (http://www.telecomtv.com)

• As of 2016, telecoms giant AT&T had 4000 systems deployed around the US, boosting mobile broadband coverage in areas like stadiums and shopping malls using ROF.
A Closer Look….

Two Channels in series

- Baseband Data
- Baseband-RF Modulation
- RF-Optical Modulation
- RF - Baseband Demodulation
- Optical - RF Demodulation

Central Base Station
Single Mode Fiber
Radio Access Point
Portable Unit

Antenna
Gain
BPF

1.8 GHz
200 THz
Research Directions

• Issue of two concatenated channels
 – The cumulative SNR is a weighted sum of optical and electrical SNR

• Optical link nonlinearity issues
 – Nonlinear, static optical channel is in series with time varying, dispersive wireless channel

• Microwave photonics
 – Optical generation, up/down conversion, (de)multiplexing of radio signals
AM-AM & AM-PM Distortion

Output Power (mW) Phase (Deg)

Phase Shift (Degrees)
A Unified Compensation

Hammerstein System
Fiber dispersion will rotate the phase of sidebands

\[\lambda_0 = 1310 \text{ nm} \]

\[0.02 \text{ nm} = (3.6 \text{ GHz}) \]

\[H(f) = \exp[-j\alpha(\lambda)l(f-f_0)^2]; \]

\(l: \) length, \(\alpha: \) Dispersion factor

Fiber dispersion will rotate the phase of sidebands
Spectrum with 5 GHz RF Sidebands

RF Frequency = 5 GHz
Range = + 10 dBm
DCV (MZM) = 9.5
Central Wavelength = 1549.92 nm
Span = 1 nm
Reflection = -27.8 dB
Fiber Chromatic Dispersion

Dispersion can cause 180° between the USB and LSB and lead to sideband cancellation – *This is not a concern up to few GHz*
More Practical ROF Bus Network
All-Optical Demultiplexing

Cellular Microcell

Radio-over-Fiber (ROF)

Wireless LAN

RAP: Radio Access Point
All-Optical Demultiplexing

- Any RF subcarrier can be accessed at any point in the ROF network.
- Unnecessary loss, noise and distortion due to O/E and E/O conversion are avoided.
- The photodetector can have low bandwidth (matched to only one subcarrier)
- Significant cost reduction
- Works well with PON access network architecture
Grating Structure in the Fiber Core

\[\lambda_{\text{Bragg}} = 2\Lambda n_{\text{eff}} \]
FBG-Based Resonance Filter

- A highly reflective filter with a bandwidth in the sub-Picometer range was imprinted using two highly reflective FBGs, which formed a resonator.
- The overall length of the filter is 28mm.
Transmission Spectra of the Resonance Filter

- The stop bandwidth of the FBG was ~ 0.3 nm at -3 dB and five resonant peaks were created.
- The bandwidth of the resonant peak is determined by the length of the resonator and the reflectivity of the FBG.
Filter Transfer Function

The spectrum of resonant peak (black trace) was obtained by scanning the sideband over a 2 GHz range at 4 MHz per step. The red trace was the calculated resonant spectrum from a planar Fabry-Perot resonator.

- The filter has a bandwidth of
 - 120 MHz at -3 dB
 - 360 MHz at -10 dB
 - 1.5 GHz at -20 dB

- The insertion loss is 0.8 dB at the resonant peak.

- Filter is polarization sensitive
Demux Experiment
Filtered Spectrum

The FBG filter aligned to the LSB of the 900 MHZ peak
Selectivity of the Demultiplexer

About 25 dB from -8 to +2 dBm

Loss Due to Demultiplexer [dB]

Input RF Power (dBm)
Frequency Separation of the Filter

- The BER performance of 900 MHz signal at the filter output as the 2nd subcarrier was swept from 450 MHz to 1.1 GHz
- The BER level at 50 MHz separation is 2.72×10^{-6}
Modulation depth normally kept low to avoid extensive nonlinear distortion.

Carrier does not carry useful information, just floods the photodetector.

- \(\lambda_0 = 1310 \text{ nm} \)
- \(0.02 \text{ nm} = (3.6 \text{ GHz}) \)
Carrier Suppression

Narrow optical filters can be used to suppress un-modulated carrier

In this case sensitivity improvement ~7 dB
Single FBG based SCM Demux

Important Parameters:
1. Freq. separation \((f_i - f_j)\)
2. Slope of the FBG filter
3. Flatness of the filter top
4. Modulation depth

EX: If \(f_2 = 2.4\) GHz, filter BW < 38.6 pm
Transmission Characteristics of an FBG Measured by Agilent 8164A

Center $\lambda = 1554.184$ nm
$\Delta \lambda = 37$ pm 3 dB
Spectrum with 2.4 GHz RF Signal

RF Frequency = 2.4 GHz
Range = + 10 dBm
DCV (MZM) = 9.5
Central Wavelength = 1549.92 nm
Span = 1 nm
Reflection = -27.8 dB
Conclusions

• Radio over Fiber is an attractive approach for wideband wireless access
• Fiber has ample bandwidth
• Lots of existing dim/dark fiber
• Supporting multiple standards is possible
• Major concerns are
 – High loss and noise due to concatenated channels
 – Nonlinear distortion and limited dynamic range of the ROF link
• Some emerging areas like coherent modulation will improve the situation