# Optical Technique for 5G Wireless Access



Ryerson Communications Lab Toronto, Canada http://www.ee.ryerson.ca/~fernando

# A Major Challenge in 5G

- 5G envisions up to 10 Gb/s
- The air interface has to be very short at Gb bit rates, due to limits in basic physics (very low energy per bit)
- $E_b = \frac{Transmit\ Power}{Baud\ Rate}$



Distance drastically drops with the bit rate - Pasquale Romano, 2Wire

### **Optical Techniques**

- Bring the radio access points closer to the user
  - Fiber-Wireless (Radio over Fiber) systems
  - Optical feeders for distributed antennas
  - Integration with PON and, HFC networks
- Optical wireless techniques
  - Visible light communications (VLC)
  - Infrared wireless communications
  - Point to point/Distributed
  - Indoor/outdoor

# **Key Issues in OW**

- Instantaneous Sine Wave Standard  $\phi$   $\phi$
- Primarily for downlink IOT needs more uplink
- Line of sight and short range
- Very short channel coherent time (outdoors)
- Detection issue. Optical reception is difficult than RF receivers
- High level of ambient light noise (SNR < 0)</li>
- Intensity modulated optical signals are scalars.
  - Only the **Amplitude** can be changed (Unipolar) while radio signals are <u>vectors</u>

# **Multi-Systems ROF**



Two (Fiber and Wireless) channels in series.

Two levels of modulation (optical and radio)

Multi system support

Ideally no signal processing at the 'Radio Access Point (RAP)

# Fi-Wi Systems also offer:

- Short air-interface Low power transmission
- (Massive) MIMO capability
  - Multiple antennas with a good 'interdistance' can be interconnected by fiber
- Wideband access
  - Low delay spread less/no ISI (flat fading)
  - Frequent LOS path less outage
- Coverage to special areas
  - tunnels, mines, super markets etc.
- Support mm-wave bands

#### Radio over Fiber

 All of the processing that enables internet traffic to turn into radio signals happens at a central station, so ROF is much cheaper to build, run and maintain than typical wireless distribution networks. It also means that new wireless standards – such as 5G wireless, and the latest Wi-Fi protocol, 802.11ac – can replace older standards simply by changing equipment at a central point -

www.newscientist.com

# **ROF Deployment**

"You could carry an entire town's wireless traffic over a single fibre-optic cable"
- Jeff Heynen, an analyst at Infonetics Research

- China Telecom is building a 5G-oriented cloud radio access network (C-RAN) fronthaul network in the north-east Liaoning province using OTN and ROF – (http://www.telecomtv.com)
- As of 2016, telecoms giant AT&T had 4000 systems deployed around the US, boosting mobile broadband coverage in areas like stadiums and shopping malls using ROF.

#### A Closer Look....



#### **Research Directions**

- Issue of two concatenated channels
  - The cumulative SNR is a weighted sum of optical and electrical SNR
- Optical link nonlinearity issues
  - Nonlinear, static optical channel is in series with time varying, dispersive wireless channel
- Microwave photonics
  - Optical generation, up/down conversion,
     (de)multiplexing of radio signals



#### **AM-AM & AM-PM Distortion**

→ Output Power (mW) → Phase (Deg)



#### **A Unified Compensation**



### RF Spectrum within the Fiber



Fiber dispersion will rotate the phase of sidebands

#### Spectrum with 5 GHz RF Sidebands



#### **Fiber Chromatic Dispersion**

Dispersion can cause 180° between the USB and LSB and lead to sideband cancellation – This is not a concern up to few GHz



# **More Practical ROF Bus Network**



# **All-Optical Demultiplexing**



# **All-Optical Demultiplexing**

- Any RF subcarrier can be accessed at any point in the ROF network.
- Unnecessary <u>loss</u>, <u>noise and distortion</u> due to O/E and E/O conversion are avoided.
- The photodetector can have low bandwidth (matched to only one subcarrier)
- Significant cost reduction
- Works well with PON access network architecture

#### **Grating Structure in the Fiber Core**



#### **FBG-Based Resonance Filter**

- A highly reflective filter with a bandwidth in the sub-Pico meter range was imprinted using two highly reflective FBGs, which formed a resonator
- The overall length of the filter is 28mm



# Transmission Spectra of the Resonance Filter

- The stop bandwidth of the FBG was ~ 0.3 nm at -3 dB and five resonant peaks were created.
- The bandwidth of the resonant peak is determined by the length of the resonator and the reflectivity of the FBG.



#### **Filter Transfer Function**

The spectrum of resonant peak (black trace) was obtained by scanning the sideband over a 2 GHz range at 4 MHz per step.

The red trace was the calculate planer Fabry-Perot resonator.

The filter has a bandwidth of

120 MHz at -3 dB 360 MHz at -10 dB 1.5GHz at -20 dB

- The insertion loss is 0.8 dB at the resonant peak.
- > Filter is polarization sensitive

Calculated F-P transmission vs measured one



Wavelength [pm]

# **Demux Experiment**



# **Filtered Spectrum**



# Selectivity of the Demultiplexer

About 25 dB from -8 to +2 dBm



#### Frequency Separation of the Filter

- The BER performance of 900 MHz signal at the filter output as the 2<sup>nd</sup> subcarrier was swept from 450 MHz to 1.1 GHz
- The BER level at 50 MHz separation is 2.72x10<sup>-6</sup>



### **Modulation Depth**



- Modulation depth normally kept low to avoid extensive nonlinear distortion
- Carrier does not carry useful information, just floods the photodetector

#### **Carrier Suppression**

Narrow optical filters can be used to suppress un-modulated carrier

In this case sensitivity improvement ~7 dB



**Received Optical Power [dBm]** 

#### Single FBG based SCM Demux



# Transmission Characteristics of an FBG Measured by Agilent 8164A

Wavelength (nm)



#### Spectrum with 2.4 GHz RF Signal



#### **Conclusions**

- Radio over Fiber is an attractive approach for wideband wireless access
- Fiber has ample bandwidth
- Lots of existing dim/dark fiber
- Supporting multiple standards is possible
- Major concerns are
  - High loss and noise due to concatenated channels
  - Nonlinear distortion and limited dynamic range of the ROF link
- Some emerging areas like coherent modulation will improve the situation