

# 5G Experimental System @ High mmWave Band (70 GHz) <u>Expanding the human possibilities of technology to make our lives better</u>

### IEEE 5G and Beyond Testbed Workshop September 24<sup>th</sup>, 2017

Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE Fellow Nokia Bell Labs

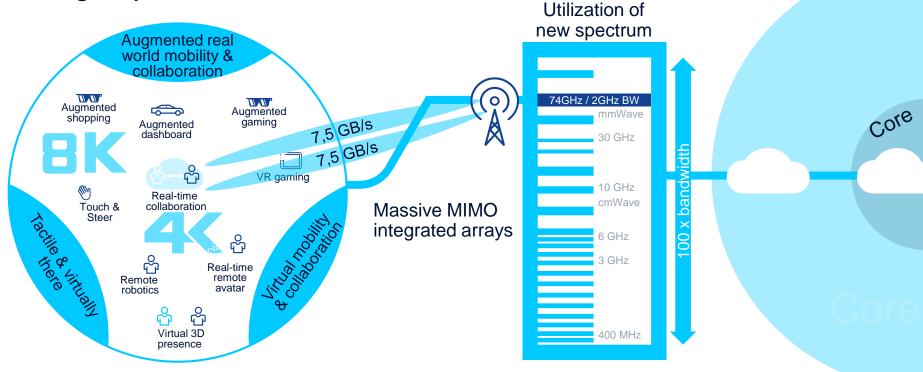
# NOKIA

# mmWave Use cases, Challenges and Proof Points

1.84.1

137 ------

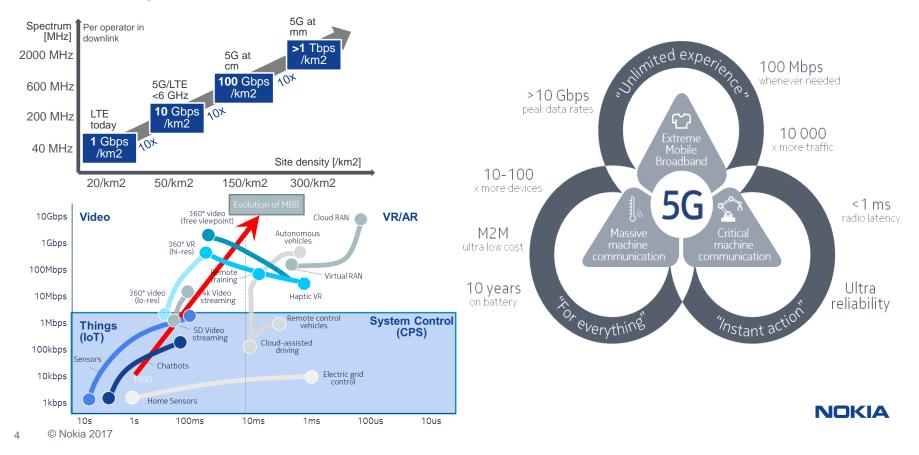
A DESCRIPTION OF A DESC


CHIY MAY CHIMA BARK

iiiiii

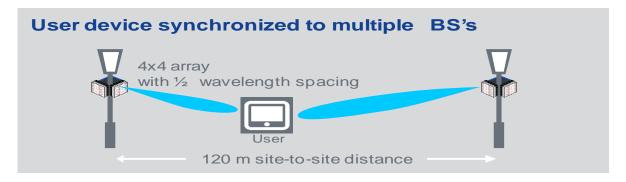
NO DA REAN

# Infinite capacity


#### Utilizing the potentials of mmWave






3

#### Value capture from 5G Evolution and Revolution towards 1 Tbs/km2 ... Three-pronged requirements for 5G networks



#### mmWave System Concept

- A much anticipated solution to meet 4G data demand is network densification
  - 4G small cells will be deployed at street-level
  - Micro/pico base stations deployed on lamp posts and sides of buildings.
  - A pico base station will be deployed every city block or roughly 120 meter site-to-site.
- The mmWave system concept is intended to complement this small cell deployment
  - Higher frequency cellular transceivers co-located with the 4G base stations.
  - Simultaneously provide backhaul for 4G and access/backhaul for 5G.





#### **5G mmWave Challenges & Proof Points**

- Unique difficulties that a mmWave system must overcome
  - Increase path loss which is overcome by large arrays (e.g., 4x4 or 8x8)
  - Narrow beamwidths, provided by these high dimension arrays
  - High penetration loss and diminished diffraction

#### Two of the main difficulties are:

- Acquiring and tracking user devices within the coverage area of base station using a narrow beam antenna
- Mitigating shadowing with base station diversity and rapidly rerouting around obstacles when user device is shadowed by an opaque obstacle in its path

#### Other 5G aspects a mmWave system will need to address:

- High peak rates and cell edge rates (>10 Gbps peak, >100 Mbps cell edge)
- Low-latency (< 1ms)</li>





PROBATING STREET

BR CA

# Overview: mmWave Experimental System @ 70 GHz

..........

ALC: NOT

NA AN AN A CORT OF

----

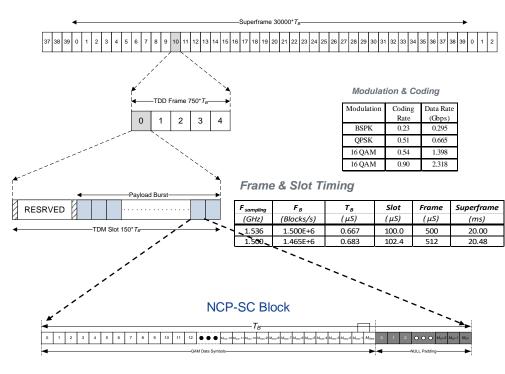
H . . . . .

-----

-

IIII

IN REAL DARK AN


Thuman

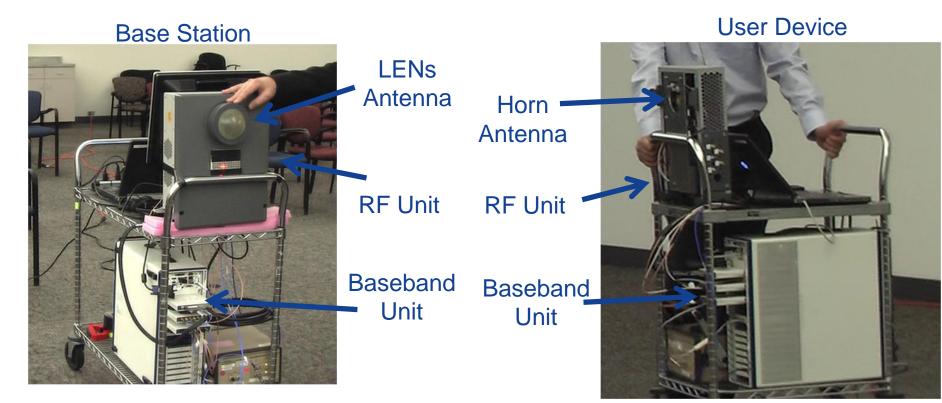
100

ALL ADDRESS OF THE AD

#### **5G Experimental System Frame Structure**

- Analog beamforming has implications for the modulation format used on the mmWave link
  - Beamforming weights are wide-band and, for OFDM, all subcarriers within a TTI must share the same beam
  - Time division multiplexing (TDM) is favored over frequency division multiplexing (FDM)
  - TDM suggests low PAPR modulation techniques can be considered to reduce the PA backoff and maximize the transmission power
- The mmWave link utilizes single carrier modulation to maintain a low. PAPR
  - PAPR is further reduced using  $\pi/2$  shifting of BPSK,  $\pi/4$  shifting of QPSK
- The QAM symbols are grouped into blocks of 512 symbols
- The modulation format is called Null Cyclic Prefix Single Carrier (NCP-SC)[8]
  - $M_{data}$  = 480 and  $M_{cp}$  = 32 provides 40 ns RMS delay spread resilience.
  - The null cyclic prefix can be increased or decreased on a per TTI basis without impacting the overall system numerology.
- The experimental system operates with a 1 GHz bandwidth using the 512 symbol NCP-SC block.
- A system with 1024 symbol NCP-SC block to achieve a 2 GHz bandwidth has also been implemented
  - Achieves 15 Gbps peak rate with 2x2 MIMO & 64 QAM

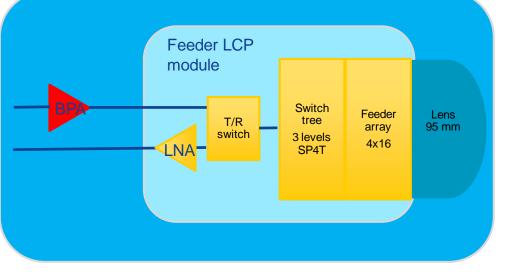


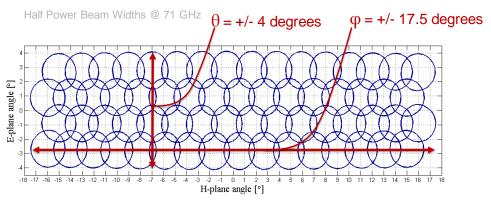

#### **NCP-SC Numerology**

| Block  | M <sub>Data</sub> | M <sub>CP</sub> |
|--------|-------------------|-----------------|
| Format |                   |                 |
| A      | 480               | 32              |
| В      | 960               | 64              |

#### NOKIA

8 © Nokia 2017


#### **Experimental Units**






#### **Steerable Lens Antenna**

- A dielectric lens focuses the mmWave energy like an optical lens focuses light.
  - Size and curvature of the lens determines the gain and beamwidth of the antenna.
  - Antenna gain 28 dB and the corresponding half-power beamwidth (HPBW) is 3 degrees in both azimuth and elevation.
- Direction of the beam can be selected by moving the position of the focal point at the base of the lenses.
  - 64 patch antennas are switched by 3 levels of SP4T switches that determine which one of the 64 elements is excited for transmission or selected for reception.
  - The HPBWs slightly overlaps that a gain within 3dB can be maintained over the steering range of the lens.
- The combination of the lens and feeder array may be steered +/- 4 degrees in elevation and +/- 17 degrees in azimuth.
- The 3-level switching matrix can be switched with 1 us settling time and driven by the baseband processing unit and switched in synchronization with the TDM slot structure.







# NOKIA

PRESSOR

1

88 2 4

THE R. L. L. L. ...........

838. WH REAL AND A SHE SHE

#### ires: mmWave Experimental Sy stem

**T**T

STORE THE

----

TATES

itti i

il line

BUCKSE I COULT BE AN AN AN AN UN CO ALL MILL CON CAR AND

Thuman

E WYALK POWN CO

A ALL AND LED ALL ADDRESS.

The second s 

100

Statistics of

SCER BECAUSE STREET

-

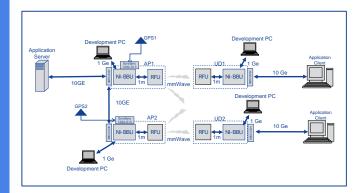
1.11

2 X . . .

#### **5G mmWave Hardware Demo**

#### Features

- 1) Feature 1: 1 GHz BW Single Link @ 70 GHz  $\sqrt{}$ 
  - Single-user acquisition and tracking Collaborate on field testing at YRP
  - Mobile World Congress 2015


#### 2) Feature 2: 1 GHz BW Multi Link @ 70 GHz

- Low latency application support < 1 ms  $\sqrt{}$
- Multi-user acquisition and tracking \sigma
- Dynamic TDD allocation
- Rapid Rerouting Access Point Diversity

#### 3) Feature 3: 2 GHz BW Phased Array @ 60 GHz

- BBU based on new platform
- 16 element phased array
- 2x2 MIMO with 64 QAM modulation
- Peak Rate : 15 Gbps







# NOKIA

PRESSOR

1 1

88 2 4

CRIES B B B B B SIRES

ALC: NO

NAME AND ADDRESS OF

# esults: mmWave Experimental System

**T**T

ALC: NO DECIDENT

----

JI SE JE UD .....

TATES

CLUY MAY CRUSS BASE

itti i

IIII

REAL PROPERTY AND A STREET

Thuman

E WYALK POWN CO

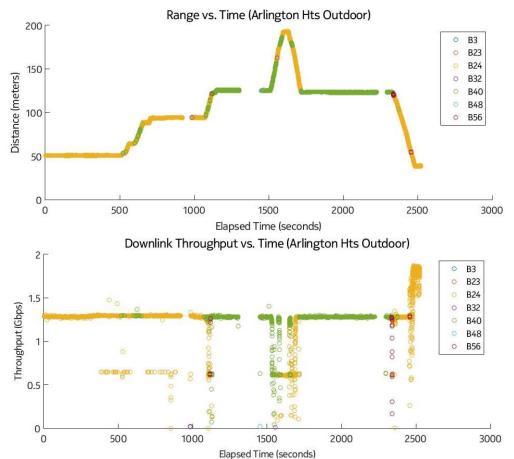
IN COLUMN TWO AND A DESCRIPTION OF

100

Statistics of

-

1.11


2 X . . .

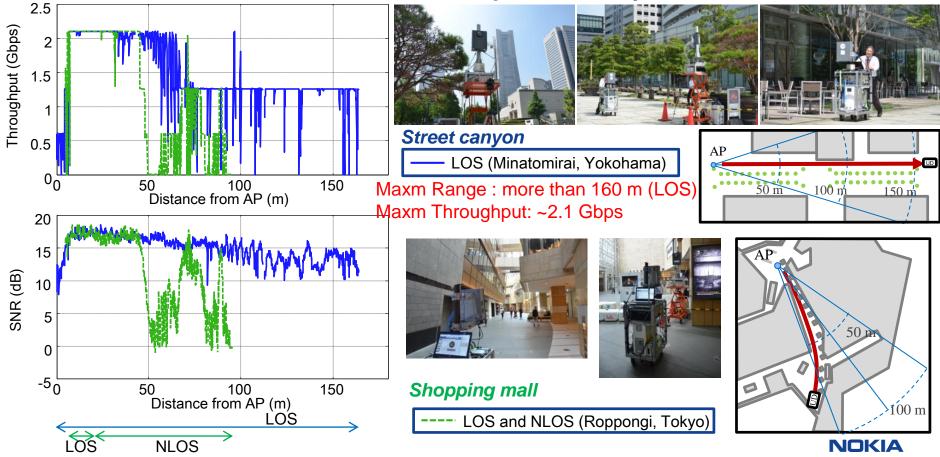
#### Nokia 5G mmWave beam tracking demonstrator (70 GHz)





#### 5G mmWave Outdoor results @ AH campus and Tokyo



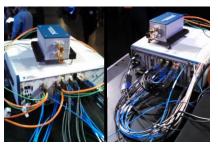

| Parameters                | Value                                                                  |
|---------------------------|------------------------------------------------------------------------|
| Operating Frequency       | 73 GHz                                                                 |
| Bandwidth                 | 1 GHz                                                                  |
| Modulation                | Null Cyclic-Prefix<br>Single Carrier<br>16 QAM<br>Single Stream (SISO) |
| Antenna Beamwidth         | 3 degrees                                                              |
| Antenna<br>Steering Range | 34 degrees Azimuth<br>8 degrees Elevation                              |

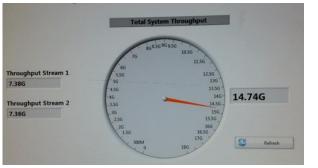
#### Outdoor Experiments @ 73 GHz very promising

Maximum Range of 200meters



#### 5G mmWave Outdoor results @ AH campus and Tokyo





<sup>16</sup> <sup>©</sup> Nokia 2017 Successfully Conducts 5G Trials @ 73 GHz in Actual-use Environments

#### MWC -2016 demos at NTT DOCOMO and Nokia Booth

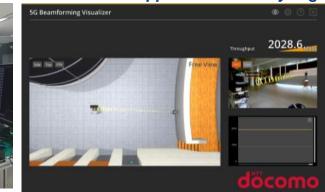
mmWave PoC System @ 74 GHz and 2GHz BW supporting 14.7 Gbps Peak rate

#### Nokia Booth: High Throughput





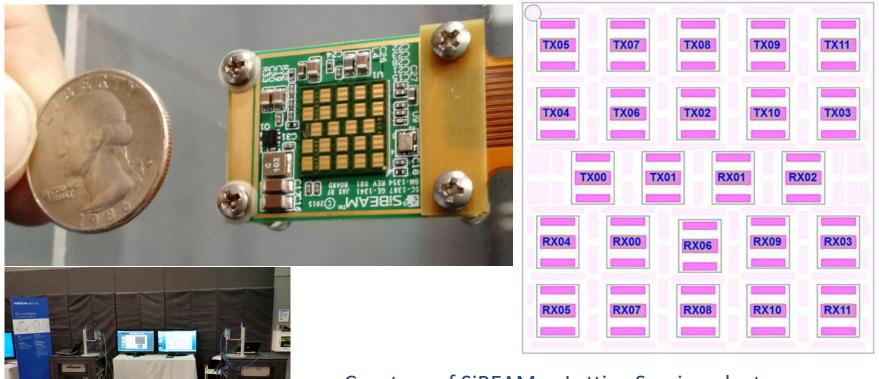
| Parameters             | Value        |
|------------------------|--------------|
| Operating<br>Frequency | 74GHz        |
| Bandwidth              | 2 GHz        |
| Antenna                | Horn Antenna |
| Throughput             | 14.7 Gbps    |


mmWave PoC System @ 73 GHz and 1 GHz BW with Beamsteering and Low Latency

#### DOCOMO Booth: AR Beam Visualization and Low Application Latency Gigi-







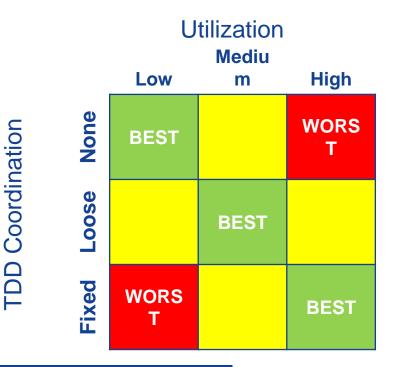



| Parameters             | Value               |
|------------------------|---------------------|
| Operating<br>Frequency | 73.5 GHz            |
| Bandwidth              | 1 GHz               |
| Antenna                | Lens w/Beamsteering |
| One way Latency        | <1 msec             |



#### **Beamscanning with a Phased Array**




Courtesy of SiBEAM, a Lattice Semiconductor company

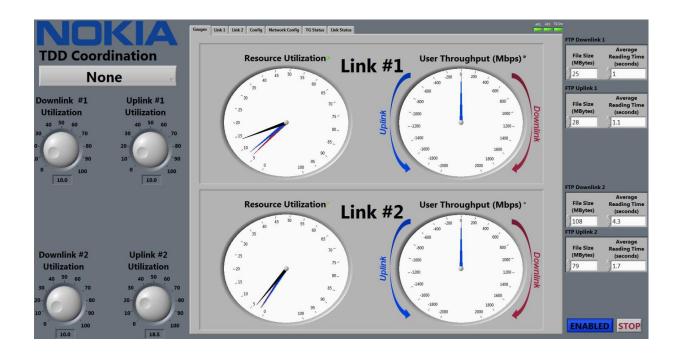
8 STNOKIA ZUT

#### Milestone 2.2 Demo

Dynamic TDD Coordination and relative performance for different traffic loads

- Goals:
  - Demonstrate that dynamic TDD can perform well for low utilization for geometries
  - Demonstrate that TDD frame coordination is needed between APs when the utilization is high
- New components (Nokia provided):
  - Traffic generator tool based
    3GPP TR 36.814 bursty traffic model
  - Demo display application showing dynamic TDD performance




NOKIA

First implementation of dynamic TDD @ mmWave!

#### Milestone 2.2 Demo

#### Demo display PC for the dynamic UL/DL split over a mmWave link

- Demo display application shows key metrics of dynamic TDD operation and interference mitigation
  - Resource Utilization
  - User Throughput
  - FTP model parameters



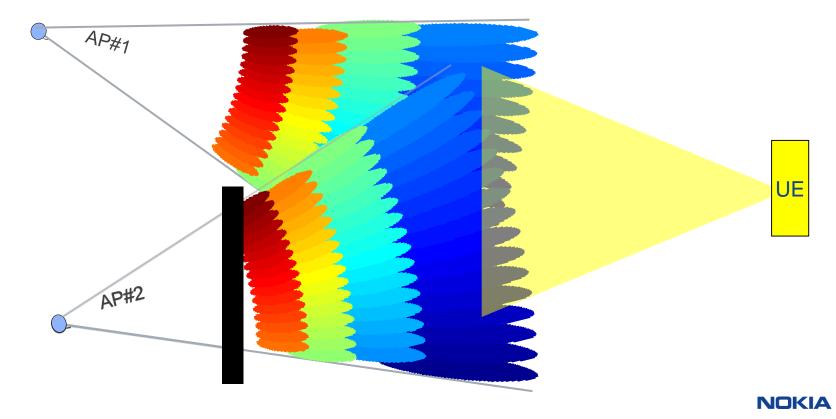


#### Dynamic TDD and TDD coordination

For dynamic adaptation to time varying traffic demand



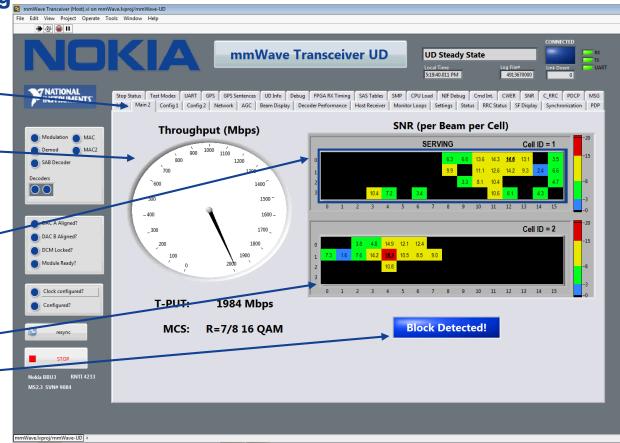
#### Nokia 5G mmWave beam tracking demonstrator (70 GHz) Rapid Rerouting Feature


- Scenario: 2 APs and 1 UD
  - APs are configured for overlapping coverage creating a triangle between AP1, AP2 and the UD
  - UD is positioned such that it can detect both APs. UD will display the detected beams from both APs. The UD will maintain connectivity to both the serving and alternate AP.
- TCP/IP throughput
  - Iperf application running over the mmWave will be used to demonstrate throughput
  - The throughput will be displayed on the User Device (UD) display showing the raw of PHY throughput of 2 Gbps.
  - Rapid re-routing between APs will show minimal TCP/IP throughput degradation depending on type of re-route.

#### Rapid Rerouting demonstrations:

- **Blockage Detection (BD)**: Serving AP is blocked by demonstrator using a mmWave opaque device (many different physical items are suitable).
- Make Before Break (MBB): UD is rotated slowly to favor the alternate AP initiating a re-route.
- Break Before Make (BBM): An abrupt change where both APs are blocked and the UD must re-initialize the connection.

### mmWave Rapid Rerouting


Blockage Detection



#### mmWave Rapid Rerouting

#### Demo Display – "Main 2" tab

- New "Main 2" Tab
  - Main 2 can be used for demonstrations showing physical layer throughput, serving cell and detected beam SNR
- Throughput Gauge
  - Duplicated from the "Main" tab shows the downlink throughput of the UD visible to observers. Throughput and active MCS are visible below in text.
  - Reflects the application throughput running over the link. Recommend Iperf session running over the mmWave link
- SNR (per Beam per Cell) -
  - Shows the beam SNR per cell for all 64 beams: 16 QAM 7/8 is in red; 16 QAM ½ is in yellow, QPSK ½ is green and BPSK 1/5 is blue. Undecoded beams are left blank
  - The serving cell is identified by the text "SERVING" and by a blue border
- Blockage Detection
  - When the UD RRC detects an abrupt drop in detected beams, the link will be rerouted and the "Block Detected!" LED will be illuminated for 1 second.







#### Summary

- Experimental systems are critical to proving that higher frequencies can be used to achieve 5G objectives.
- The 73.5 GHz, 1 GHz BW experimental system with a steerable 28 dB gain, 3 degree HPBW antenna helped to prove many of the 5G concepts
  - Feasibility of acquiring and tracking user devices within the coverage area of base station using a narrow beam antenna
  - Achieving Latency of less than 1msec
  - Dynamic TDD using multilink system
  - Rapid Rerouting
    - Multi link system will demonstrate how shadowing can be mitigated with base station diversity and rapidly rerouting around obstacles
- Demonstrated a peak rate of 15 Gbps using 2x2 MIMO and 64 QAM modulation @ MWC-2016



#### NOKIA

## Contributors

#### Mark Cudak, Phil Rasky, Jim Kepler, Yohannes Solichien, .. DOCOMO Team NI Team



