Future Networks Webinar Series

MITIGATING THERMAL & POWER LIMITATIONS TO ENABLE 5G

Presented By –

Earl McCune, CTO
Eridan Communications
emccune@eridancommunications.com

Wednesday, October 24, 2018
OVERVIEW

• 5G New-Radio modulation
• Heat flows in Transmitters and Arrays
• Physically available options
• Where we are now
• Paths forward
We are here because...

• It is well known that linear amplifiers operate with low efficiency on OFDM-style signals
• The scale of 5G is unprecedented
• An inefficient network may be unsustainable
• The solution: use sampling theory instead of linear network theory

<table>
<thead>
<tr>
<th>Key 5G Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency in the air link</td>
</tr>
<tr>
<td>Latency end-to-end (device to core)</td>
</tr>
<tr>
<td>Connection density</td>
</tr>
<tr>
<td>Area capacity density</td>
</tr>
<tr>
<td>System spectral efficiency</td>
</tr>
<tr>
<td>Peak throughput (downlink) per connection</td>
</tr>
<tr>
<td>Energy efficiency</td>
</tr>
</tbody>
</table>
Linear PA Efficiency: Business Impact

- Signal design progression forces linear PA efficiency to decrease
- First-cost and operating costs increase
 - Higher input power is required (larger power supply)
 - Thermal management of the PA heat (larger heatsink)
- Preferred efficiency range by industry: between 40 to 70%
- 5G must be profitable to build and operate – or it will fail

emccune@eridancommunications.com
Linear PA Efficiency Ceilings

- Entire output signal – *peak to peak* – must fit within the linear PA load line
- PA is scaled for signal *peak* power
- Signal *average* power sets communication range
- Low average power increases PA heat
 - *Remains near the maximum power dissipation*

$\eta_{\text{MAX}} \leq \eta_0 \cdot \frac{P_{\text{APR,MAX}}}{10^{\frac{P_{\text{APR,MAX}}}{20}}}$

<table>
<thead>
<tr>
<th>Theory</th>
<th>V_k/V_s</th>
<th>η_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs HBT</td>
<td>0.17</td>
<td>0.35</td>
</tr>
<tr>
<td>CMOS</td>
<td>0.29</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Power Flow in Transmitters

Conservation relation

\[P_{\text{DC}} + P_{\text{IN}} = P_{\text{OUT}} + P_D \]

Conservation of Power actually models Conservation of Energy

Output power is specified
- Normalize to \(P_{\text{OUT}} \)

Power dissipation \((P_D) \) is not wanted

Design to minimize \(P_D \)

\[\eta \equiv \frac{P_{\text{OUT}}}{P_{\text{DC}} + P_{\text{IN}}} \approx 1 - \frac{P_D}{P_{\text{DC}}} \quad \text{for small } P_{\text{IN}} \]

Minimize \(P_D \) for best efficiency

27% Efficiency

70% Efficiency

\(P_{\text{IN}} \)

\(P_{\text{DC}} \)

\(P_{\text{OUT}} \)

\(P_D \)

\(\eta \)

\(\% \)

\(\text{Input Power} \)

\(\text{Power Dissipation} \)

\(\text{Power supply size} \)

\(\text{Heatsink size} \)

\(\text{TX power} \)

\(\text{Circuit Energy Efficiency} \)

emccune@eridancommunications.com
LTE Downlink Case (to scale)

Linear Transmitter Efficiency < 11% by the design of the LTE signal

Power In \(P_{DC} \)

Power Dissipation (bad)

Temperature rise (deg C)

Thermal Resistance (deg C/watt)

Heatsink

Ambient temperature

\[P_D \]

11% Efficiency

Signal Power Out (good)

\[P_{OUT} \]

\[P_{IN} \]

\[11\% \text{ Efficiency} \]

• Improve transmitter efficiency
 ▪ reduce size (and cost) of the power supply
 ▪ reduce size (and cost) of the heatsink

emccune@eridancommunications.com
Active Antenna Array Challenge

25% all-in efficiency
Heatsink around 4 sides

HEAT

• Outer transmitters are “electric blankets” to the inner transmitters
• Center elements get very hot
• Constrains the achievable size of active antenna arrays
Options – Look to Physics

• Actual transmitter objective: *modulation accuracy at-power*

• Traditional approach: Linear Network Theory
 - Modulate at small signal levels
 - Increase signal power with linear amplifiers
 - Maintains modulation accuracy, as long as all amplifiers remain linear (mathematical sense)

• *Alternative approach: Sampling Theory*
 - At-power sampling of the output waveform

\[V_{out} = I_D \cdot R_L \]

\[V_{out} = \frac{V_{SUPPLY}}{R_L + R_{ON}} \cdot R_L \]
Sampling Theory in Transmitters

• Nyquist showed how sampling is used to maintain waveform accuracy

• Sampling circuitry is inherently nonlinear
 ▪ *Exactly* what Ohm’s Law requires to achieve energy efficiency

• Fourier theory still applies
 ▪ Circuit speed must be sufficiently fast to properly resolve the samples
Implementation Differences

Linear Operation
• Output range is bounded by the knee voltage
• Signal always stays on the load line

Switching Operation
• Output range is bounded by the transistor ON resistance
• Circuitry operates at the endpoints of the load line
• Power dissipation decreases
 ▪ Efficiency increases
Sampling Transmitter Operation

\[V_{out} = \frac{V_{SUPPLY}}{R_L + R_{ON}} \cdot R_L \]

- Phase modulated carrier samples the signal envelope
- Dynamic Power Supply (DPS) sets the instantaneous envelope value
- Switch-mode mixer modulator (SM\(^3\)) does the sampling at-power

Switching forces use of polar signal processing
Sampling Transmitter Operation

- Power is dissipated as the transistor state transitions the load line
- Transition time must be <5% of the carrier period (cycle time)

\[\eta_{MAX} = \frac{R_L}{R_L + R_{ON}} \]

\[\frac{R_L}{R_{ON}} = 100 \]
\[\frac{R_L}{R_{ON}} = 30 \]
\[\frac{R_L}{R_{ON}} = 10 \]
• DPS has a DC-DC converter and linear regulator (LAM) in series

• LAM stays efficient because the voltage drop across it remains very small

emccune@eridancommunications.com
Keys to Success: Magnitude Dynamic Range

- **Now have \(>80 \text{dB} \) direct envelope control**
 - Prior polar controlled envelope dynamic range was \(\sim 35 \text{ dB} \)
 - Path to 130dB
- **“Good enough” \(\rho(t) = 0 \)**
 - Enables QAM & LTE
 - Enables very high order QAM & LTE

emccune@eridancommunications.com
Keys to Success: Drain-lag Solved

- Both long-term and short-term effects are moved outside of the SM³ operating area
- Requires modification of the FET devices

Peak power is 2.5 W
Repetition period: 0.051 s
Measured Efficiency vs. Signal PAPR

- Use of switching circuitry greatly improves measured efficiency
- Modulation accuracy is maintained
- Modulation generality is not compromised
- Reported efficiency is fully linearized

Keysight measurement

IEEE 5G

emccune@eridancommunications.com
Modulated Efficiency across Frequency

![Efficiency vs. Frequency Graph](image-url)
LTE using 256-QAM: Downlink

- 0.72% EVM
- -54 dB ACLR
- 43.3% Efficiency inclusive of linearizer
 - Improves with CFR
- 2.5W Peak envelope power
- 10.0 dB PAPR
 - Innate signal used here

emccune@eridancommunications.com
Spreading the Key Performance Points

- Traditional power amplifier must achieve all required parameters
- Spreading the precision driver points improves options for local and global optimization

\[\Delta t \leq 100\text{ps} \]
Architecture Trade-offs

Traditional Linear Amplifier

Direct Polar SM³

Comparison is at the dashed outline

<table>
<thead>
<tr>
<th>Feature</th>
<th>Linear TX</th>
<th>Doherty TX</th>
<th>MIRACLE TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning range (f_{\text{high}} : f_{\text{low}})</td>
<td>1.22 : 1</td>
<td>1.22 : 1</td>
<td>50 : 1</td>
</tr>
<tr>
<td>5G signal efficiency</td>
<td>9%</td>
<td>22%</td>
<td>43%</td>
</tr>
<tr>
<td>Data density (max)</td>
<td>6 bps/Hz</td>
<td>6 bps/Hz</td>
<td>>14 bps/Hz</td>
</tr>
<tr>
<td>Power supply (W)</td>
<td>1x (normalized)</td>
<td>0.4x</td>
<td>0.2x</td>
</tr>
<tr>
<td>Heat absorber (m³)</td>
<td>8.4x</td>
<td>2.5x</td>
<td>1x (normalized)</td>
</tr>
<tr>
<td>Maximum frequency</td>
<td>(f_T / 3)</td>
<td>(f_T / 6)</td>
<td>(f_T / 10)</td>
</tr>
</tbody>
</table>
Net Business Impact

- Sampling based transmitter; measured efficiency
- Costs fall for all of the present modulations
 - Input power is reduced by 2x to 6x
 - Heatsink size drops by 3x to 7x
- All signal types are in the industry-preferred efficiency range: 40 to 60%
- 5G can now be profitable to build and operate
This is real — Hardware is *here* now

140nm GaN SM\(^3\) MMIC

16384-QAM output signal measurement

140nm GaN DPS MMIC
Keys to Success: Switch Resistance Consistency

• Extremely reliable SM3 device timing is critical
 ▪ R_{on} vs. V_{gs} uniformity
 ▪ Proper foundry process is key
 ▪ Switch based design also key

• It exists – proof is in hand
 ▪ Multiple devices from multiple wafers with no change to calibration tables
Conclusions

• Generating 5G-NR and LTE-256 signals with simultaneous
 • 43% / 47% fully-linearized TX energy efficiency
 • ACLR: -54 dB (LTE-256 signal) ; -52 dB (5G-NR signal)
 • 0.7% EVM (LTE-256 signal)
• Use sampling theory, not linear network theory
• Modulation agnostic: fully backward compatible
• Also forward compatible:
 • Keysight lab validated 16,384-QAM with 0.4% EVM
Q & A

Thanks for your time and attention!

Any questions?

emccune@eridancommunications.com