Charting an integrated future: IoT and 5G research papers

The fifth-generation cellular network (5G) represents a major step forward for technology. In particular, it offers benefits for the network of interrelated devices reliant on wireless technology for communication and data transfer, otherwise known as the Internet of Things (IoT). 

The 5G wireless network uses Internet Protocol (IP) for all communications, including voice and short message service (SMS) data. Compared to earlier networks, such as 3G and 4G, it will have higher response speeds (lower latency), greater bandwidth, and support for many more devices. 

Every sector is using some form of wireless-enabled technology. Low latency plays a critical role in many IoT applications where a lag in data transfer to an IoT device can mean a disruption in the manufacturing process, a crashed car, or a disrupted power grid. Increased capacity to support IoT devices means more of the world’s population will be able to access the global digital economy. 

Yet with more capability comes more complexity, and there are challenges to making 5G connection a full reality. There is global interest in realizing the potential of 5G and IoT integration. Research papers on a wide array of topics are helping to advance the field and bring the vision of 5G technology and IoT connectivity into focus. 

INGR 2021Ed Banner

Realizing the potential of 5G and IoT through research

The 5G network represents the best chance for an ever-growing array of wirelessly connected devices to realize their full potential

Making the case for 5G technology

Using millimeter wave technology, 5G connectivity offers increased speed, bandwidth, and reliability of data transfers. These improvements mean that more computing power can be pushed to the cloud, clearing the way for smaller, cheaper, and simpler devices that can do more. Smartphones are a great example of how increased wireless network capacity has allowed devices to get smaller while increasing the range of a user’s cloud-based activities. 

The 5G mobile network also has social justice implications. As Brookings Institute senior fellow Nicol Turner Lee discusses in her research paper “Enabling Opportunities: 5G, the Internet of Things, and Communities of Color,” the development of wireless networks will factor heavily in whether mobile-only users can fully participate in the global digital economy. 

Universal benefits, inspired innovations

The 5G network could spur additional IoT innovations such as the following:

  • Advancements in edge computing
  • Creation of smart cities, smart power grids, and expanded functionality of smart homes
  • Improvements in health-care monitoring and delivery of services
  • Retail improvements
  • Real-time remote control of robots that could improve farming efficiency
  • Automated manufacturing
  • Supply chain improvements
  • Improved transportation and self-driving cars 
  • Expanded use of artificial intelligence reliant on machine learning
  • More cloud computing
  • Expansion of virtual reality and augmented reality

While work to build out 5G has begun, many of the challenges and logistics of completing this vast network still need to be resolved. Some of the challenges include the following:

  • Managing disruption to the radio transmission
  • Network and wireless security
  • Connectivity issues from the network to the internet (known as “backhaul”)
  • Assuaging concerns over health impacts of increased high-speed electromagnetic energy
  • Cost and logistics of building a vast network of towers across different governmental jurisdictions

Those with a stake in making 5G a reality are investing in researching solutions that explore the possibilities and challenges of 5G deployment and IoT integration. Research is also emerging on how 5G and IoT technology can be utilized to respond and fight the COVID-19 pandemic. 

A forthcoming IEEE Engineering Management Review paper, “The Fight against COVID-19 Pandemic with 5G Technologies,” highlights several illustrative case studies on how 5G and IoT are enabling innovation in telehealth, contact tracing, education, retail and supply chains, e-government and remote offices, smart manufacturing and factory automation, e-tourism, and entertainment. The paper posits that these solutions will be instrumental in returning to usual life in the postpandemic world.

INGR 2021Ed Banner

Two halves of a whole—the relationship between IoT and 5G

5G is revolutionary in that it replaces hardware components of wireless networks with software components that offer increased system flexibility. In doing so, it delivers more power to wireless devices that rely upon fast, uninterrupted data transmission. 

Making IoT smarter

Artificial intelligence (AI) technology, which plays heavily in many IoT applications, relies on smooth and frequent transmission of data. Every disruption in the data transfer process interrupts the feedback loop that facilitates machine learning. 5G’s lower latency eliminates these data hiccups, which translates to better performance over time. 

The 2019 paper “AI Management System to Prevent Accidents in Construction Zones Using 4K Cameras Based on 5G Network,” published in the IEEE Xplore digital library, examines how workplace safety can be improved through AI technologies running on the 5G wireless platform. 

Critical and massive IoT

There are two types of IoT devices: Critical IoT devices offer low latency, high uptime benefits. They facilitate bandwidth-hungry applications that include telemedicine, first responder applications, and factory automation. Massive IoT refers to a network of lots of devices using little bandwidth or speed. These devices find use in applications such as wearables, smart agriculture, smart homes, and smart cities. 

5G technology also allows a service provider to dedicate portions of their networks for specific IoT applications. Known as network slicing, the ability to segment a set of optimized resources further improves the ability of 5G to respond to the varying data and bandwidth needs of critical and massive IoT applications. 

The recent paper “Secure Healthcare: 5G-enabled Network Slicing for Elderly Care,” published in the IEEE Xplore digital library, provides insight into the existing limitations in elder care and discusses a solution that encompasses 5G network slicing techniques and innovations. 

Cybersecurity on the 5G

One fundamental difference between 5G and its predecessors is the shift from a hardware-based system to a software-based system. This shift presents new security challenges as software is more vulnerable to hacking—the same wireless pathways over the 5G that enable IoT can be used to breach it, whereas to hack hardware you need direct physical access. 

Technical solutions to expanding capacity while increasing IoT security, such as those that the IEEE paper “Wideband Antennas and Phased Arrays for Enhancing Cybersecurity in 5G Mobile Wireless” discusses, are being researched and discussed worldwide. In addition, the Brookings Institute’s 2019 research paper “Why 5G Requires a New Approach to Cybersecurity,” discusses why developing coordinated cybersecurity public policies is of paramount importance.

INGR 2021Ed Banner

Investing in the future—top research projects on IoT and 5G integration

Governments and the private sector, including trade associations, service providers, and major tech players are funding research at academic institutions. For example, the University of Texas at Austin’s Wireless Network and Communications Group has an Industrial Affiliates Program that allows companies like Huawei to become stakeholders in the center and to participate in the growth and direction of its research on millimeter waves. Similarly, New York University’s Brooklyn engineering program partners with Nokia, Intel, and AT&T to support its research. 

In the US, the National Science Foundation is supporting advanced wireless research. Research England’s UK Research Partnership Investment Fund (UKRPIF) supports 5G research, including that being done at the University of Surrey’s 5G Innovation Centre. Nonprofit organizations, such as the Brookings Institute, are also conducting research on the logistics and impacts of 5G and IoT. 

Universities, companies, and organizations such as IEEE regularly team up to host conferences around the world that showcase all aspects of 5G. IEEE’s Future Networks is dedicated to enabling 5G and regularly calls for papers related to 5G. 

INGR 2021Ed Banner

Opportunities for 5G and IoT—building a sustainable future

The ultimate goal of 5G and IoT integration is for everything to be connected more simply on smaller, less expensive devices. The 5G network has the potential to drive advancements in IoT and to fundamentally change the way humankind operates around the globe with long-term positive impacts possible with respect to sustainability. 

In practical terms, the 5G network provides better efficiency through increased control. At the local level, a smart city would be better able to monitor, through IoT applications, public safety and utilities. This would mean greater conservation and a reduction in their overall carbon impact while improving the lives of its residents. 

As Darrel M. West examines in his paper “Achieving Sustainability in a 5G World,” IoT innovation in the energy, manufacturing, agriculture and land use, buildings, and transportation sectors coupled with full 5G deployment could allow the global community to meet our long-term sustainability goals. 

Want to learn more about the latest IoT and 5G research? Participate in the 2020 IEEE 3rd 5G World Forum (5GWF'20). The virtual conference, which will be available from September 10–12, aims to bring together experts from industry, academia, and research to exchange their vision as well as their achieved advances towards 5G. In addition, it aims to encourage innovative cross-domain studies, research, early deployment, and large-scale pilot showcases that address the challenges of 5G.

Interested in becoming an IEEE member? Joining this community of over 420,000 technology and engineering professionals will give you access to the resources and opportunities you need to keep on top of changes in technology, as well as help you get involved in standards development, network with other professionals in your local area or within a specific technical interest, mentor the next generation of engineers and technologists, and so much more.